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We consider a classically chaotic system that is described by a Hamiltonian H �Q, P; x�, where x is a
constant parameter. Specifically, we discuss a gas particle inside a cavity, where x controls a deformation
of the boundary or the position of a “piston.” The quantum eigenstates of the system are jn�x��. We
describe how the parametric kernel P�n jm� � j�n�x� jm�x0��j2 evolves as a function of dx � x 2 x0.
We explore both the perturbative and the nonperturbative regimes, and discuss the capabilities and the
limitations of semiclassical as well as random waves and random-matrix-theory considerations.

PACS numbers: 05.45.Mt, 03.65.Sq
Consider a system that is described by a Hamiltonian
H �Q, P; x� where �Q, P� are canonical variables and x
is a constant parameter. Our main interest is in the case
where the parameter x represents the position of a small
rigid body (“piston”) which is located inside a cavity, and
the �Q, P� variables describe the motion of a “gas particle.”
It is assumed that the system is classically chaotic. The
eigenstates of the quantized Hamiltonian are jn�x�� and the
corresponding eigenenergies are En�x�. The eigenenergies
are assumed to be ordered, and the mean level spacing will
be denoted by D. We are interested in the parametric kernel

P�n jm� � j�n�x� jm�x0��j2 � tr�rnrm� . (1)

In the equation above, rm�Q, P� and rn�Q, P� are the
Wigner functions that correspond to the eigenstates
jm�x0�� and jn�x��, respectively. The trace stands for
dQdP��2p h̄�d integration. The difference, x 2 x0, will
be denoted by dx. We assume a dense spectrum. The ker-
nel P�n jm�, regarded as a function of n 2 m, describes
an energy distribution. As dx becomes larger, the width
as well as the whole profile of this distribution “evolves.”
Our aim is to study this parametric evolution (PE).

The understanding of PE is essential for the analysis
of experimental circumstances where the “sudden approxi-
mation” applies [1]. It also constitutes a preliminary stage
in the studies of quantum dissipation [2]. The function
P�n jm� has received different names such as “strength
function” [3] and “local density of states” [4]. Some
generic features of PE can be deduced by referring to
time-independent first-order perturbation theory (FOPT),
and to random-matrix-theory considerations [4,5]. Other
features can be deduced by using classical approxima-
tion [4,6], or its more controlled version that we call
phase-space semiclassical approximation [2]. Still another
strategy is to use time-domain semiclassical considerations
[1]. In the case of cavities, one can be tempted to use
“random-wave” considerations as well. Depending on the
chosen strategy, different results can be obtained. The
“cavity” system is a prototype example for demonstrating
the “clash” between the various approaches to the problem.
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We are considering the cavity example where we have a
“gas” particle whose kinetic energy is E � 1

2 my2, where
m is its mass and y is its velocity. The gas particle is
moving inside a cavity whose volume is V and whose di-
mensionality is d. The ballistic mean free path is �bl. The
area of the displaced wall element (piston, for brevity) is
A, while its effective area is Aeff; see [2] for geometrical
definition. The mean free path �col � V�A between colli-
sions with the piston may be much smaller compared with
�bl. The penetration distance upon a collision is � � E�f,
where f is the force that is exerted by the wall. Upon quan-
tization, we have an additional length scale, which is the
de Broglie wavelength lB � 2p h̄��my�. We shall dis-
tinguish between the hard walls case, where we assume
� , lB ø �bl, and soft walls, for which lB ø �. Note
that taking h̄ ! 0 implies soft walls.

For the convenience of the reader we start by listing the
various expressions that can be derived for P�n jm�, along
with an overview of our PE picture. We then proceed
with a detailed presentation. We are going to argue that
four parametric scales dx

qm
c ø dxNU ø dxprt ø dxSC

are important in the study of PE.
Standard FOPT assumes that P�n jm� has a simple per-

turbative structure that contains mainly one state:

P�n jm� � dnm 1 tail�n 2 m� . (2)

We define dx
qm
c to be the parametric change that is re-

quired in order to mix neighboring levels. For dx . dx
qm
c

an improved version of FOPT implies that P�n jm� has a
core-tail structure [2]:

P�n jm� � core�n 2 m� 1 tail�n 2 m� . (3)

The core consists of those levels which are mixed non-
perturbatively, and the tail evolves as if standard FOPT
is still applicable. In particular, we argue that the tail
grows like dx2, and not like dx. We also explain how
the core width depends on dx. It should be noted that
Wigner’s Lorentzian [4,5] can be regarded as a special case
of core-tail structure.
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Another strategy is to use semiclassical considerations.
The simplest idea is to look at the definition (1) and to
argue that rn�Q, P� and rm�Q, P� can be approximated
by microcanonical distributions. This is equivalent to the
classical approximation that has been tested in [6]. If we
try to apply this approximation to the cavity example we
should be aware of a certain complication that is illustrated
in Fig. 1. One obtains

P�n jm� �

µ
1 2

tcl

tcol

∂
d�n 2 m� 1 S

µ
En 2 Em

dEcl

∂
.

(4)

A detailed explanation of this expression is given in a
later paragraph. A more careful semiclassical procedure
is to take the width of the Wigner function into account.
Namely, we can approximate rn�Q, P� and rm�Q, P� by
smeared microcanonical distributions. It can be used in
order to get an idea concerning the quantum mechanical
“interpretation” of the Dirac’s delta function component
in (4). The result is

d�n 2 m� �
1
p

dESC

dE2
SC 1 �En 2 Em�2

(5)

with dESC � h̄�tbl, where tbl � �bl�y. However, we
argue that the latter procedure, which is equivalent to the
assumption of having uncorrelated random waves, is an
oversimplification. It is better to use the time-domain
semiclassical approach which is based on the realization
that P�n jm� is related to the so-called survival amplitude
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FIG. 1. Phase-space illustration of the energy surface (repre-
sented by bold solid line) that supports the Wigner function of
a given eigenstate jm�x0��, and the energy surfaces (light solid
lines) that support the Wigner functions of some of the eigen-
states jn�x��. The left illustration refers to a hypothetical generic
case, while the right illustration refers to the cavity example. The
associated P�n jm� is plotted below each of the phase-space il-
lustrations: The classical behavior is indicated by the black
lines, and the quantum mechanical behavior is represented by
the grey filling. It should be realized that detailed quantal-
classical correspondence is assumed, which is guaranteed only
if dx . dxSC. In the quantum mechanical case, classical sharp
cutoffs are being smeared (“tunneling” correction). In the cavity
example the classical delta singularity is being smeared as well.
In the latter case a naive phase-space picture cannot be used in
order to determine the width of the smearing.
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via a Fourier transform [1], leading to the identification
dESC � h̄�tcol, where tcol � �col�y.

The important point to realize is that (4) with (5) is
fundamentally different from either (2) or (3). The main
purpose of this Letter is to give a clear idea of the route
from the regime where perturbation theory applies to the
nonperturbative regime and where semiclassical consider-
ation becomes useful. We will explain that the width of
the core in (2) defines a “window” through which we can
view the “landscape” of the semiclassical analysis. As dx
becomes larger, this window becomes wider, and eventu-
ally some of the semiclassical structure is exposed. This
is marked by the nonuniversal parametric scale dxNU. For
dx much larger than dxNU, the nonuniversal structure (5)
of the core is exposed. Still, the perturbative tail of (3) may
survive for relatively large values of dx. One wonders
whether this tail survives for arbitrarily large dx. While
the answer for the latter question may be positive for hard
walls, it is definitely negative for soft walls, as well as
for any other generic system. Assuming soft walls, one
should realize that the perturbative tail of (3) occupies a
finite bandwidth. It is well known [7] that having finite
bandwidth is a generic feature of all quantized systems,
provided h̄ is reasonably small. Therefore one should
introduce an additional parametric scale dxprt. For dx ¿
dxprt the core spills over the bandwidth of the perturba-
tive tail, and P�n jm� becomes purely nonperturbative.
The nonperturbative P�n jm� does not necessarily corre-
spond to the classical approximation (4). We introduce one
more additional scale, dxSC. For dx ¿ dxSC, detailed
quantal-classical correspondence is guaranteed, and (4)
with (5) becomes applicable.

Expression (2) is a straightforward result of standard
time-independent FOPT, where

tail�n 2 m� �

Ç µ
≠H

≠x

∂
nm

Ç2 dx2

�En 2 Em�2 . (6)

An estimate for the matrix elements �≠H �≠x�nm follows
from simple considerations [2]. Upon substitution into (6)
it leads to

P�n jm� �
µ

dx

dx
qm
c

∂b 1
�n 2 m�21g

for b�x� ø jn 2 mj ø b (7)

with b � 2 and b�x� � 0. We have defined

dxqm
c �

s
G����d 1 3��2���

4p �d21��2

1
Aeff

l
d11
B . (8)

We shall refer to the dependence of j�≠H �≠x�nmj
2 on

n 2 m as the band profile. It is well known [7] that the
band profile is related (via a Fourier transform) to a clas-
sical correlation function. If successive collisions with the
piston are uncorrelated, then we have g � 0. But in other
typical circumstances [8] we may have 0 , g. The matrix
�≠H �≠x�nm is not a banded matrix unless we assume soft
(rather than hard) walls. In the latter case, the bandwidth
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Db � �h̄�tcl� is related to the collision time tcl � ��y

with the walls. Having hard walls �� , lB� implies that
Db becomes (formally) larger than E. The notion of band-
width is meaningful only for soft walls �� ¿ lB�. In di-
mensionless units the bandwidth is b � Db�D.

The standard result (2) with (6) of FOPT is valid as
long as dx ø dx

qm
c . Once dx becomes of the order of

dx
qm
c , we expect few levels to be mixed nonperturbatively.

Consequently (for dx . dx
qm
c ), the standard version of

FOPT breaks down. As dx becomes larger, more and
more levels are being mixed nonperturbatively, and it is
natural to distinguish between core and tail regions. The
core width b�x� is conveniently defined as the participation
ratio (PRR), namely b�x� � �

P
n�P�n jm�	2
21. The tail

consists of all of the levels which become “occupied” due
to first-order transitions from the core. It extends within
the range b�x� , jn 2 mj , b. Most of the spreading
probability is contained within the core region, which im-
plies a natural extension of FOPT: The first step is to make
a transformation to a new basis where transitions within the
core are eliminated. The second step is to use FOPT (in
the new basis) in order to analyze the core-to-tail transi-
tions. Details of this procedure are discussed in [2], and
the consequences have been tested numerically [8]. The
most important (and nontrivial) consequence of this proce-
dure is the observation that mixing on small scales does not
affect the transitions on large scales. Therefore we have, in
the tail region, P�n jm� ~ dx2 rather than P�n jm� ~ dx.
The above considerations can be summarized by stating
that (7) holds with b � 2 well beyond the breakdown of
the standard FOPT.

We turn now to the discussion of the nonperturbative
structure of the core. The identification of b�x� with the
inverse participation ratio is a practical procedure as long
as we assume a simple energy spreading profile where the
core is characterized by a single width scale. As long as
this assumption (of having structureless core) is true we
can go one step further and argue that

b�x�jPRR � 2p2

µ
dx

dx
qm
c

∂2��11g�
, jgj , 1 . (9)

The argument goes as follows: Assuming that there is only
one relevant energy scale �b�x�	, it is implied by (7) that
P�n jm� has the normalization �dx�dx

qm
c �2��b�x�	11g .

This should be of order unity. Hence, Eq. (9) follows.
The tail should go down fast enough �g . 21� or our
“improved” perturbation theory does not hold. Namely,
for g , 21 the core width becomes cutoff dependent
(via its definition as a PRR), and consequently it is not
legitimate to neglect the “backreaction” for core-to-tail
transitions. The tail should go down slow enough �g , 1�
in order to guarantee that the core width is tail determined.
Otherwise, if g . 1, then the core width is expected to
be determined by transitions between near-neighbor levels
leading to a simple linear behavior b�x� � �dx�dx

qm
c �.

Nonperturbative features of P�n jm� are associated with
the structure of the core. In order to further analyze the
nonperturbative features of P�n jm�, we will apply semi-
classical considerations. An eigenstate jn�x�� can be rep-
resented by a Wigner function rn�Q, P�. In the classical
limit, rn�Q, P� is supported by the energy surface
H �Q, P; x� � En. However, unlike microcanonical
distribution, it is further characterized by a nontrivial
transverse structure. One should distinguish between
the “bulk” flat portions of the energy surface (where Q
describes free motion), and the relatively narrow curved
portions (where Q is within the wall field of force). In
the curved portion of the energy surface (near the turning
points), Wigner function has a transverse Airy structure
whose “thickness” is characterized by the energy scale
DSC � ��h̄�tcl�2E	1�3. This latter expression is valid for
soft walls �lB ø ��. In the hard wall case �� , lB� it
goes to DSC � E. Unlike the curved portions, the bulk
flat portions of the energy surface are characterized by
DSC � �h̄�tbl�. Now we consider two sets of eigenstates,
jn�x�� and jm�x0��, which are represented by two sets of
Wigner functions, rn�Q, P� and rm�Q, P�. The probabil-
ity kernel (1) can be written as P�n jm� � tr�rnrm�. If
rn�Q, P� and rm�Q, P� are approximated by microcanoni-
cal distributions, then P�n jm� is just the projection of
the energy surface that corresponds to m, on the “new”
energy surface that corresponds to n. This leads to the
classical approximation, Eq. (4). In the classical limit, n
and m become continuous variables, and Dirac’s delta just
reflects the observation that most of the energy surface
(the bulk component) is not affected by changing the
position of the classically small piston. The second term
in (4) has the normalization �tcl�tcol�, and corresponds to
the tiny component which is affected by the displacement
of the piston. For dx , � it extends over an energy range
dEcl � fdx, where f is the force which is exerted on the
particle by the wall. When dx becomes larger than � the
energy spread becomes of order E.

In the quantum mechanical case, we should wonder
whether (4) can be used as an approximation, and what
is the proper interpretation of Dirac’s delta function. It is
relatively easy to specify a sufficient condition for the
validity of the classical approximation. Namely, the
transverse structure of Wigner function can be ignored if
DSC ø jEn 2 Emj ø dEcl. For hard walls DSC � E,
and therefore the classical approximation becomes
inapplicable. For soft walls, the necessary condition
DSC ø dEcl is satisfied provided dx is large enough.
Namely, dx ¿ dxSC, with dxSC � ��l

2
B�1�3.

We want to go beyond the classical approximation,
and to understand how the classical Dirac delta function
in (4) manifests itself in the quantum mechanical case.
Thus we are interested in the singular overlap of the bulk
components (see Fig. 1), and the relevant DSC for the cur-
rent discussion is h̄�tbl. The most naive guess is that the
contribution due to the overlap of bulk components
becomes nonzero once jEn 2 Emj , DSC. Equivalently,
one may invoke a random-wave assumption: One may
have the idea that jn�x�� and jm�x0�� can be treated as
2843
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uncorrelated random superpositions of plane waves.
Adopting the random-wave assumption, it is techni-
cally lengthy but still straightforward to derive (4) with
dESC � h̄�tbl.

The naive phase-space argument that supports the
random-wave result (5) is definitely wrong. One should
realize that jEn 2 Emj , DSC is a necessary rather than
a sufficient condition for having a nonvanishing bulk
contribution. This latter observation becomes evident if
one considers the trivial case dx � 0 for which we should
get P�n jm� � 0 for any n fi m. Thus h̄�tbl should
be regarded as an upper limit for dESC. We are going
to argue that the correct result (for large enough dx) is
indeed (5), but tbl should be replaced by the possibly
much larger length scale tcol.

In order to go beyond the random-wave assumption
we use the time-domain semiclassical approach which is
based on the realization that P�n jm� is related to the
so-called survival amplitude via a Fourier transform [1]:

X
n

P�n jm�2pd

µ
v 2

En

h̄

∂

� FT

ø
m

Ç
exp

µ
2i

H t
h̄

∂ Ç
m

¿
. (10)

Note that jm� is an eigenstate of H �Q, P; x0� while H �
H �Q, P; x�. The knowledge of the short time dynamics,
via classical considerations, can be used to obtain the “en-
velope” of P�n jm�. Adopting Wigner’s picture, the evolv-
ing jm� in the right-hand side of Eq. (10) is represented by
an evolving (quasi) distribution rm�Q, P; t�. Let us as-
sume that the piston is small, such that the collision rate
with it �1�tcol� is much smaller than 1�tbl. Because of
the chaotic nature of the motion, successive collisions with
the piston are uncorrelated. It follows that the portion of
rm�Q, P; t� which is not affected by collisions with the pis-
ton decays exponentially as exp�2t�tcol�. It is reasonable
to assume that any scattered portion of rm�Q, P; t� loses
phase correlation with the unscattered portion. There-
fore the right-hand side of (10) is the Fourier transform
of an exponential. Consequently, P�n jm� should have
the Lorentzian shape (5), but the correct energy width is
dESC � h̄�tcol rather than h̄�tbl.

For an extremely small parametric change such that
dx ø dx

qm
c , we have the simple perturbative structure (2).

Then, for larger values of dx, the energy distribution de-
velops a core. As long as this core is structureless it is
characterized by the single width scale b�x� of (9). Now
we would like to define a new parametric scale dxNU. By
definition, for dx ¿ dxNU nonuniversal features manifest
themselves, and the core is characterized by more than one
width scale. For our cavity example, this happens once the
semiclassical Lorentzian structure (5) is exposed, and b�x�
of (9) becomes larger than dESC�D, leading to

dxNU �
1

4p

µ
�d 1 1�

A
Aeff

∂1�2

lB . (11)
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Let us reemphasize that the semiclassical argument that
is based on (10) applies to the nonuniversal parametric
regime dx ¿ dxNU, where the semiclassical Lorentzian
structure (5) is exposed. It is also important to realize
that in the nonuniversal regime we do not have a theory
for the b�x� of (7). The derivation of (9) is based on the
assumption of having a structureless core, and therefore
pertains only to the universal regime.

It is well known [7] that for any quantized system
�≠H �≠x�nm is characterized, for sufficiently small h̄, by
a finite bandwidth Db . Consequently, it is possible to
define a nonperturbative regime dx ¿ dxprt, where the
condition b�x� ø b is violated. In the nonperturbative
regime, expression (7) becomes inapplicable because
the core spills over the (perturbative) tail region. Thus
P�n jm� becomes purely nonperturbative. Hard walls are
nongeneric as far as the above semiclassical considera-
tions are concerned. In the proper classical limit all of
the classical quantities should be held fixed (and finite),
while making h̄ smaller and smaller. Therefore the proper
classical limit implies soft walls �lB ø ��, leading to
finite bandwidth Db � h̄�tcl. From (9), it follows that
the condition b�x� ø b is definitely not violated for
dx # dxNU. Hence we conclude that dxprt ¿ dxNU, but
we cannot give an explicit expression since (9) becomes
invalid in the nonuniversal regime.

In the parametric regime dxNU ø dx ø dxprt, we
have, on the one hand, dEcl ¿ Db and, on the other hand,
b�x� ø b by definition. Therefore we cannot obtain in
this regime a contribution that corresponds to the second
term in (4). A necessary condition for the manifestation
of this second term is dx ¿ dxprt. However, it should be
remembered that dx ¿ dxprt is not a sufficient condition
for detailed correspondence with the classical approxi-
mation. For our cavity example, detailed correspondence
means that the whole classical structure of (4) is exposed.
As discussed previously, the sufficient condition for
such detailed correspondence is dx ¿ dxSC. This latter
condition is always satisfied in the limit h̄ ! 0.
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