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Abstract
During an adiabatic pumping cycle a conventional two-barrier quantum device
takes an electron from the left lead and ejects it to the right lead. Hence, the
pumped charge per cycle is naively expected to be Q � e. This zero-order
adiabatic point of view is in fact misleading. For a closed device we can get
Q > e and even Q � e. In this paper, a detailed analysis of the quantum pump
operation is presented. Using the Kubo formula for the geometric conductance,
and applying the Dirac chains picture, we derive practical estimates for Q.

PACS numbers: 03.65.−w, 03.65.Vf, 73.23.−b, 05.45.Mt

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Understanding of charge transport in mesoscopic and molecular size devices is essential for the
future realization of ‘quantum circuits’ [1]. Of particular interest are adiabatic processes that
take electrons and move them one by one via a device. The simple-minded peristaltic point
of view of such process is misleading: such picture looks valid in the case of an open circuit,
but breaks down once the pump is integrated into a closed circuit [2–4]. It is the purpose of
this paper to further elaborate on the physics of quantum pumping in closed circuits and to
provide a detailed analysis of a prototype pump. The interest and the feasibility of realizing
experiments with closed circuits is discussed in section 1.3 of [5].

1.1. The prototype pumping device

The prototype example for a quantum pumping device is the two-barrier model (figure 1). The
one particle Hamiltonian is

H(X1(t), X2(t)) = 1

2m
p̂2 + X1(t)δ(x̂ − x1) + X2(t)δ(x̂ − x2) (1)

where m is the mass of the particle and (x̂, p̂) are the position and the momentum operators.
The region x < x1 is the left lead and the region x > x2 is the right lead. We refer to the
segment x1 < x < x2 as the ‘dot region’. The driving is performed by changing X1 and X2

in time. In an actual experiment, the control parameters X1 and X2 represent gate voltages.
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Figure 1. Illustration of the model system. The two-barrier pumping device is used in two different
configurations. Left panel: open lead geometry; right panel: closed ring geometry. The barriers
are located at the nodes x1 and x2 while the current is measured through the section at x0.

In order to talk about charge transfer we have to also define a current operator. In what follows,
we use the conventional definition

I = e

2m
(p̂δ(x̂ − x0) + δ(x̂ − x0)p̂) (2)

where e is the charge of the particle and x0 is an arbitrary section point. The momentary
current via different sections is in general not the same. But if we integrate it over a whole
pumping cycle the result becomes independent of x0.

The pumping device can be used in two different configurations. In the case of an open
geometry (figure 1), the leads are attached to reservoirs that have the same chemical potentials.
For simplicity, one assumes a zero-temperature Fermi occupation.

In the case of a closed geometry (figure 1), the leads are detached from the reservoirs and
are connected together so as to have a ring. This means periodic boundary conditions over
a large space interval (−L/2) < x < (L/2). Furthermore, the closed system is assumed to
be strictly isolated from any environmental influences. The closed system can be regarded
as a network with two nodes that are connected by two bonds one of length LD (dot region)
and the other of length LW (wire region). The total length of the ring is L = LD + LW. We
assume that LD � L.

1.2. Open (leads) geometry

The open version of the two barrier model has been considered in [6] using the scattering
matrix formalism of Büttiker Prétre and Thomas (BPT) [7, 8]. A typical pumping cycle is
illustrated in figure 2(c). In the first half of the cycle an electron is taken from the left lead into
the dot region via the left barrier, while in the second half of the cycle an electron is transferred
from the dot region to the right lead via the right barrier. Naively, by this peristaltic picture, it
seems that at most one electron is pumped through the device per cycle. This expectation is
supported by the formal calculation. Using the BPT formula one obtains [9]

Q = (1 − gT)e (3)

where 0 < gT < 1 characterizes the transmission of the device during the charge transfer. In
the limit gT → 0, which is a pump with no leakage, indeed one gets Q = e. Otherwise one
gets Q < e.

1.3. Closed (ring) geometry

Our interest is in the closed version of the two barrier model. A major observation is that
the pumped charge Q is not ‘quantized’ even if the device is closed and isolated from any
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Figure 2. (a) Upper left: the energy levels of a ring with two barriers, at the beginning of the
pumping cycle. It is assumed that the three lower levels are occupied. (b) Upper right: the adiabatic
levels as a function of time during the pumping cycle. (c) Lower left: the (X1, X2) locations of the
Dirac chains of the three occupied levels. Filled (hollow) circles imply that there is (no) monopole
in the pumping plane. Note that for the sake of illustration overlapping chains are displaced from
each other. The pumping cycle encircles 2 + 1 Dirac chains that are associated with the third and
second levels, respectively. (d) Lower right: the two Dirac chains that are associated with the third
level.

environmental influences. Moreover, it can be larger than unit charge. In fact, we can have
Q � e.

The analysis that we are going to present demonstrates and refines general results that
were obtained in [3]. There we have worked out an artificial circuit which has been modelled
as a three-site system. In the present paper, we would like to work out a major prototype
model that allows the desired comparison between results for closed circuit as opposed to that
of open geometry equation (3).

We are going to use the Kubo approach to quantum pumping [2–4]. The ‘Dirac chains
picture’ which we further review in the next subsection makes a distinction between ‘near-
field’ and ‘far-field’ pumping cycles. The near-field result has been further considered in [10]
using an extension of the BPT scattering approach to quantum pumping.

1.4. The Dirac chains picture

In order to analyse an adiabatic [11] pumping cycle, we have first to understand the geometry of
the parameter space. In fact, the parameter space of the two-barrier model is three dimensional
(X1, X2, X3) where X3 = � is the flux via the ring. In practice, we assume a planar � = 0
pumping cycle, but for the theoretical discussion it is convenient to regard � as a free parameter.

We ask what is the amount of charge which is transported via a section of the ring per
cycle. For this purpose, we have to calculate the current I = 〈I〉 at each moment. If we were
changing the flux we would have by Ohm law I = −G33�̇ where G33 is called the Ohmic
(dissipative) conductance. But if we change (say) the parameter X1 then I = −G31Ẋ1, where
G31 is called the geometric (non-dissipative) conductance [12–14]. In general we can write
dQ = −G31dX1 − G32dX2 and hence
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Q =
∮

Idt =
∮

G · dX (4)

where X = (X1, X2) and G = (G31,G32).
The elements of the conductance matrix Gkj can be calculated using the Kubo formula.

It turns out [11, 14] that in the adiabatic limit G31 = B2 and G32 = −B1 where �B is the
‘magnetic’ field (2-form) which appears in the theory of Berry phase [11]. The sources of
this field are Dirac monopoles that are located at the points of degeneracy. For the double
barrier model, a given level n can have a degeneracy provided X1 = X2 and either � = 0 or
� = πh̄/e modulo 2πh̄/e. In fact, we have for each level (excluding the ground state) two
Dirac chains of degeneracies as in figure 2(d).

From the above observation, one easily draws the following conclusions: (i) we can get
Q � e for a tight cycle around a Dirac chain if the degeneracy is in the pumping plane. (ii)
We can get Q � e for a tight cycle around a Dirac chain if the degeneracy is off the pumping
plane. (iii) We can get Q ∼ e for a cycle which is located in the far field of a Dirac chain.
The existence of a far-field region is not self-evident. This constitutes a major motivation for
the present study.

1.5. Outline

The outline of this paper is as follows. In section 2, we clarify the starting point of the
calculation, which is the Kubo formula. In section 3, we introduce a preliminary discussion
of the expected results and their significance. Then, in sections 4–11 we analyse the pumping
process in the two-barrier model. In particular, we find the dependence of Q on the ‘radius’
of the pumping cycle and make a distinction between ‘near-field’ and ‘far-field’ results.

2. The Kubo formula

Given a time-dependent Hamiltonian H(X) with X = X(t), we define F = −∂H/∂X and
would like to calculate the generalized conductance as defined by the expression

〈I〉 = −GẊ. (5)

We label by n the adiabatic levels of the closed ring. The adiabatic states are defined by the
equation H|n〉 = En|n〉 with implicit X dependence. Using these notation the Kubo formula
for the geometric conductance can be written as

G =
∑

m(�=n)

2h̄Fmn

(Em − En)2
Im[Inm]. (6)

The above expression assumes that only one level (n) is occupied. If several levels are occupied
we have to sum over them. If we have more than one control variable, say X1 and X2, then we
have to use the more elaborated notation G31 and G32 in order to distinguish between different
elements of the conductance matrix.

If the pumping cycle crosses very close to a degeneracy, we can get from equations (5)–(6)
a very large current I, and upon integration we can find that the transported charge is Q � e.
In the next sections, we shall develop actual estimates for Q. But first we would like to further
illuminate the significance of Q.

The Schrödinger equation can be written in the adiabatic basis, where the transformed
Hamiltonian matrix takes the form Hnm = Enδnm + ẊAnm, where En are called the adiabatic
energy levels and Anm is a matrix that can be calculated using a well-known recipe (which
is summarized in section 3 of [3]). One regards Ẋ as the ‘small parameter’. If the system
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Figure 3. Cartoon of the adiabatic evolution within the framework of the two-level approximation.
The system is prepared in level n, and the nearby empty level is m = n + 1. The control parameter
X(t) is being changed slowly and therefore the system ‘oscillates’ around the first-order adiabatic
solution. The energy of the latter is illustrated by a dashed line. Note that the identity of the
adiabatic state changes gradually and can be regarded as constant only on scales δX � δXc .

is prepared in an instantaneous adiabatic state |n〉, then the instantaneous current is I = 0,
whereas if it is prepared in an instantaneous steady state (an eigenstate of Hnm), then the
instantaneous current is finite, say I = I0. Accordingly one can question the physical
relevance of Q: after all typically the initial preparation is an adiabatic state and not a steady
state.

So let us consider an actual physical scenario. For simplicity, we assume that only two
adiabatic levels are involved: the occupied level n and next (empty) level m = n + 1. To make
the dynamical picture simple, we use an analogy with the dynamics of a spin 1/2 particle and
consider the illustration in figure 3. We regard the state n as spin polarized in the z direction
and the state m as spin polarized in the −z direction. The instantaneous steady states of the
Hamiltonian are polarized along an axis that has a small tilt relative to the z direction.

Initially, the spin is polarized in the z direction and therefore I (t = 0) = 0. For some time
we have |X(t) − X(0)| � δXc where δXc is the relevant parametric scale for the variation
of the adiabatic levels. During this time interval the tilt angle is approximately constant. The
spin is performing a precession around the tilted axis. As a result, we get I (t) �= 0. In fact,
the maximum current is I (t) = 2I0. We get this current after half period of precession.

So, we have a modulated current I (t) that equals upon averaging I0. As long as
|X(t) − X(0)| � δXc, the precession goes on as described above. But on larger time scales
we have to take into account the variation in the tilt angle. Consequently, the modulation of
the current is no longer in the range 0 < I (t) < 2I0, but rather it is shifted and may increase.
Still the average stays approximately I0.

Thus, we see that in the actual physical scenario the average over I (t) is the same as the
I0 of the instantaneous steady state. The validity conditions for this statement are essentially
the validity conditions of linear response theory, which are further explained in [3]. The above
discussion illuminates the justification for the use of the first-order steady-state solution of
Kubo for the purpose of evaluating the pumped charge in an actual physical scenario.

3. Charge transfer during an avoided crossing

The pumped charge Q is obtained via the integral equation (4) using equation (6) for G. On the
basis of the naive heuristic picture of the introduction (and see figure 2), we expect that most
of the contribution to the integral would come from a small segments in X space where the
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last occupied level has an avoided crossing with the first unoccupied level. Later we precisely
define the region in X space where this assumption is a valid approximation.

Let us try to sketch what might come out from the calculation. Later on we are going
to do a proper job. But before we dive into the detailed analysis (which is quite lengthy), it
would be nice to gain some rough expectation. Given that our interest is focused in a small
energy window such that En ∼ E, we define vE = (2E/m)1/2. The mean level spacing in the
energy range of interest is

� = vE
h̄π

L
(7)

while the energy splitting �s at the avoided crossing might be much smaller. We define the
following notation:

|Fnm| ≡ σ0 (8)

|Inm| ≡ evE

L

√
gϕ (9)

�s/� ≡
√

1 − g0 (10)

where both 0 < gϕ < 1 and 0 < g0 < 1 are dimensionless. Note that g0 is related to the
overall transmission gT of the device. The adiabaticity condition is

|Ẋ| � �2
s

h̄σ0
(11)

and from equation (5) with (6) we get the current

〈I〉 = 2

(
h̄σ0

�2
s

Ẋ

)(evE

L

)√
gϕ. (12)

The time of the Landau–Zener transition via the avoided crossing is

δt ≈ (�0/σ0)/Ẋ (13)

and hence the transported charge is

Q ≈ 〈I〉δt ≈
(

gϕ

1 − g0

)1/2

e (14)

where g0 and gϕ should be estimated in the region of the avoided crossing. We note that
gϕ/(1 − g0) is like the Thouless conductance and can be regarded as a measure for the
sensitivity of the energy levels to a test flux. We have pointed out and discussed this issue in
[2, 3], and later it was derived [10] in the context of the scattering formalism.

In figure 4, we display the numerically determined Q for various path segments. The
horizontal axis is the |X1 − X2| distance of the path segment from the degeneracy point. As
|X1 − X2| becomes small g0 → 1 and we get Q � e. But the asymptotic value Q ≈ e which
is observed for large |X1 − X2| cannot be explained by such a simple-minded calculation. A
major objective of the detailed analysis is to illuminate the observed crossover.

4. The model, basic equations

The one particle Hamiltonian of the two-barrier model depends on the set of parameters
(X1, X2,�). From now on we use units such that e = h̄ = 1 and characterize the geometry
by the dimensionless parameter

b = LW/LD � 1 (15)
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Figure 4. Panels (a) and (b): numerical calculation of the pumped charge Q. The model parameters
are LD = m = e = 1 and LW = 3000.43. The current I is measured at the middle of the dot. The
numerical integration is carried out along the segments which are indicated in panel (c) and the
results are multiplied by 2 so as to include the equal contribution that comes from the second
half of the cycle. There are two sets of data points. One set (filled circles) is for pumping cycles
that encircle an in-plane degeneracy point (nr = 2993). A second set (hollow circles) is for
pumping cycles that encircle an off-plane degeneracy point (nr = 2992). The location of the
avoided crossing for each data set is indicated by the solid lines in panel (c). The near- and the
far-field approximations that we derive for Q are indicated by the solid lines in panel (a). The zoom
in panel (b) reveals that Q in the far field is in fact slightly less than 1, which is explained in
section 13.

We write the wavefunction on the two bonds as

ψdot(x) = (2/L)1/2√qD sin(ϕD(x)) (16)

ψwire(x) = (2/L)1/2√qW sin(ϕW(x)) (17)

where ϕ(x) = kx + const. Given (X1, X2) and assuming � = 0, the eigenstates of this
Hamiltonian can be found by searching kn values for which the matching conditions on the
log-derivatives are satisfied. This leads to the following system of equations:

cot(ϕW1) + cot(ϕD1) = 2m

k
X1 (18)

cot(ϕW2) + cot(ϕD2) = 2m

k
X2 (19)

ϕD2 − ϕD1 = kLD (20)

ϕW2 − ϕW1 = kLW (21)

where it should be clear that ϕD1 ≡ ϕD(x1), etc. The corresponding eigenenergies are
En = k2

n

/
2m. A similar system of equations can be written for � = π . We can find the qW/qD

ratio for a given eigenstate via the matching condition on the wavefunction at either of the
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two nodes:
√

qW sin(ϕW) = √
qD sin(ϕD) (22)

where (ϕD, ϕW) mean either (ϕD1, ϕW1) or (ϕD2, ϕW2). The normalization condition implies
that

LD

L
qD +

LW

L
qW ≈ 1. (23)

For an ‘ergodic state’ we have q ≈ 1 for both bonds. In general, we characterize an eigenstate
by the mixing parameter

	 ≡ 2 arctan

(√
Prob(wire)

Prob(dot)

)
= 2 arctan

(√
b

(
qW

qD

)1/2
)

(24)

such that 	 = 0 means a definite dot state, while 	 = π means a definite wire state. In
practice, we have 0 < 	 < π .

In the numerical analysis, we use units such that m = 1 and LD = 1. Given X1 and X2,
we solve the system of equations for kn and for ϕ(n) at the nodes. Then we determine q(n) at
each bond, and from the ratio we get 	(n) as well.

5. Regions in X space

We focus on a small energy window such that the energy levels of interest are E < En <

E + dE. We characterize a barrier Xδ() using its transmission

g(X) =
[

1 +

(
1

vE
X

)2
]−1

≈
(

1

vE
X

)−2

. (25)

The last expression holds if g(X) � 1. We can regard g1 = g(X1) and g2 = g(X2) as an
alternate way to specify X1 and X2. The (X1, X2,�) space is divided into various regions
(figure 5(a)). There is a region where g1 and g2 are of order 1 (|1 − g| � 1). There the
delta functions at the nodes can be treated as a small perturbation. There is a region where
1/b � g1, g2 � 1. There each dot level mixes with many wire levels. This intermediate
region will be discussed in a future work [15]. Finally, there is the region in X space which
is of interest in the present study:

g1, g2 � 1/b. (26)

We shall argue that in this region the states are categorized into ‘wire states’ and ‘dot state’,
which mix only whenever the energy level of the dot ‘cross’ an energy level of the wire
(figures 5(b)–(d)). This allows to use ‘two-level’ approximation in the analysis of the mixing.

The degeneracies of the Hamiltonian occur at points (X(r), X(r)) along the symmetry axis
of X space. They are divided into two groups: those that are located in the � = 0(mod(2π))

planes and those that are located in the � = π(mod(2π)) planes. In the appendix, we find
the explicit expression for X(r). It should be clear that each degeneracy point is duplicated
mod(2π) in the � direction, hence creating what we call a ‘Dirac chain’.

There are only two non-trivial degeneracies in X space which are associated with a given
level n. One is with the neighbouring level ‘from above’ and the other is with the neighbouring
level ‘from below’.

Once we locate a degeneracy point, we can make a distinction between ‘near-field’ and
‘far-field’ regions. The near field is defined as the region where we can use degenerate
perturbation theory in order to figure out the splitting of the levels. In contrast to that, the far
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Figure 5. Regions in X space. The model parameters are the same as in the previous figure. Panel
(a) displays the region of interest as defined in equation (26). It is bounded by the left and by the
bottom solid lines which are defined by g(X) ∼ 1/b. In-plane and off-plane degeneracy points are
indicated by filled and hollow circles, respectively. We indicate by arrow one in-plane degeneracy
point (nr = 2993). A zoom of its near field is displayed in panel (b). The ellipse in panel (b)
indicates a level splitting that equals �/10. The dashed lines in panels (a) and (b) indicate far-field
and near-field pumping cycles, respectively. In panels (c)–(e) we show the energy levels (kn) along
three paths in �X space, which are (X1 = X,X2 = ∞, � = 0), (X1 = X, X2 = X,� = 0) and
(X1 = X,X2 = X,� = π), respectively. The degeneracies nr = 2992 . . . 2999 are circled. The
arrow indicates the representative degeneracy point nr = 2993. In panels (d), the odd states are
indicated by dashed lines so as to distinguish them from the even states.

field is defined as the region where we can calculate the splitting of the levels by treating the
dot–wire coupling as a first-order perturbation.

In figure 5(a), we show one pumping path that crosses in the near-field region and a
second pumping path that crosses in the far-field region.

6. Eigenstate analysis

In the theoretical analysis, it is illuminating to map the behaviour of kn and 	(n) in (X1, X2,�)

space. See figures 6 and 7. It is not difficult to realize that the variation of 	 is bounded as
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Figure 6. The energy level splitting and the mixing parameter 	 for two pairs of levels. The model
parameters are LD = m = e = 1 and LW = 160.43. In panel (a), we show the contour lines for
the energy level splitting of the first (even) dot level with an odd wire level (n = 158) and for the
energy level splitting of the first (even) dot level with an even wire level (n = 157). The two cases
are displayed again in panels (b) and (c), respectively, where we plot both level splitting contours
(solid lines) and 	 contours (dashed lines). In the ‘even–odd crossing’ case we have an in-plane
degeneracy, which is indicated by a filled circle, while the inner most contour line is for �/5
splitting. Note that within the white regions the mixing is maximal (	 ∼ π/2). In the ‘even–even
avoided crossing’ case the projection of the off-plane degeneracy point is indicated by a hollow
circle.

follows:
√

b

[
1

4
g

]+1/2

< tan(	/2) <
√

b

[
1

4
g

]−1/2

(27)

where g is either g1 or g2. The derivation of this result is as follows: the matching conditions
at a given node implies that (ϕD, ϕW) are constraint to be on one of two branches which
are illustrated in figure 8. With each point of a given branch, we can associate a 	 value
via equation (24) and either equation (18) or equation (19). It is a straightforward exercise
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(solid lines). The model parameters are LD = m = e = 1 and LW = 3000.43, and we focus on
the degeneracy point nr = 2993. For these parameters, X(r) ≈ 465 and g(r) ≈ 4.5 × 10−5. All
the plots refer to the path (X2 − X1) = 5. In the left panel, the dashed lines are derived from
equation (37). In the middle panel, the dashed lines are based on equations (40) and (41) with θ

from equation (36). In the right panel, the dashed lines are deduced from equation (30).
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Figure 8. The wire phase ϕW/π versus the dot phase ϕD/π at a node with delta barrier
g(X) = 0.225. The two branches are implied by the matching condition (18). The ratio
|sin(ϕD)/sin(ϕD)| attains its extremal values (equation (27)) at the points which are indicated
by circles.

to express 	, say, as a function of ϕD and then to find its minimum and maximum values.
Assuming that g � 1 one obtains equation (27).

Given 	(n) we can extract what are q(n) at each bond and what are ϕ(n) at the nodes. By
solving equation (23) with equation (24) we get

qD = b(cos(	/2))2 (28)

qW = (sin(	/2))2 (29)

then from equation (22) with either equation (18) or equation (19) we find an expression for
ϕ at a given node. In particular, we get

ϕD =
(

1 ± 1√
b

tan(	/2) + · · ·
) [

1

4
g

]1/2

. (30)

Note that ϕ is well-defined mod(π). There are states which are dot like (	 � 1) and there
are states which are wire like (	 ∼ π). There are regions where a dot-like state mixes with
wire-like state leading to pair of states with 	(+) ∼ 	(−) ∼ π/2. From the above formula, it
follows that in the latter case

ϕ
(+)
D ≈ ϕ

(−)
D ≈

[
1

4
g

]1/2

(31)



3586 I Sela and D Cohen

|ϕ(+)
D − ϕ

(−)
D | = 1√

b

[
1

4
g

]1/2 (
tan(	(+)/2) + tan(	(−)/2)

)
. (32)

7. Eigenenergies and ‘mixing’ from perturbation theory

In order to find the splitting and the mixing of the two levels, we use perturbation theory
once in the far-field analysis and once in the near-field analysis. In both cases, we use the
following notation. The unperturbed basis is |i〉 with a dot-like state |1〉 and a wire-like |2〉.
The perturbed eigenstates |n〉 are indicated as |+〉 and |−〉. The Hamiltonian in both cases has
the general form

H = H0 + W =
(

E1 0
0 E2

)
+

(
W11 W12

W21 W22

)
. (33)

The eigenvectors are real so W12 = W21. The Hamiltonian can be written as a linear
combination of Pauli matrices

H =
(

E1 + E2

2
+

W11 + W22

2

)
1 +

(
E1 − E2

2
+

W11 − W22

2

)
σ3 + W12σ1 (34)

we define

�s = 2

√(
E1 − E2

2
+

W11 − W22

2

)2

+ W 2
12 (35)

tan(θ) = 2W12

(W11 − W22) + (E1 − E2)
. (36)

The eigenenergies are

En =
(

E1 + E2

2
+

W11 + W22

2

)
± �s

2
. (37)

The eigenstates are found by rotating a spin half around the y axis at an angle θ

|+〉 −→
(

cos (θ/2)

sin (θ/2)

)
(38)

|−〉 −→
(−sin (θ/2)

cos (θ/2)

)
. (39)

Assuming that the unperturbed basis consists of distinct dot-like and wire-like states, it
follows that we can use the following approximation:

	(+) = θ (40)

	(−) = π − θ. (41)

Using equations (28) and (32), this implies√
q

(+)
D q

(−)
D ≈ b

2
| sin(θ)| (42)

|ϕ(+)
D − ϕ

(−)
D | = 2√

b

[
1

4
g

]1/2 1

| sin(θ)| . (43)

We note that in the strong mixing region we have θ ≈ π/2.
In the next sections, we obtain explicit expressions for the ‘splitting’ and the ‘mixing’

using the above scheme. From the numerics (see, e.g., figure 7), we see that these are in fact
very satisfactory approximations.
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8. Far field analysis

The eigenstates of the ring in the X region of interest as defined in equation (26) can be found
using first-order perturbation theory with respect to the wire–dot coupling. This is explained
below. We have verified numerically that the approximation is remarkable unless we are
very close to a degeneracy point. This defines our distinction between ‘far’- and ‘near’-field
regions. In the latter case, in the next section we present a complementary treatment using
degenerate perturbation theory.

The unperturbed Hamiltonian in the far-field analysis corresponds to X1 = X2 = ∞.
Using the notation as defined in the previous section, we take |2〉 as the nth wire state and |1〉
as the closest dot state from above. Hence,

E1 = 1

2m

(
π

LD
(1 + [n/b]integer)

)2

(44)

E2 = 1

2m

(
π

LW
n

)2

. (45)

Using the formula

Wij = − 1

4m2X
[∂ψ(i)][∂ψ(j)] (46)

we get

W11 = − v2
E

2LD

[
1

X1
+

1

X2

]
(47)

W22 = − v2
E

2LW

[
1

X1
+

1

X2

]
(48)

|W12| = v2
E

2
√

LDLW

∣∣∣∣ 1

X1
± 1

X2

∣∣∣∣ (49)

where the ± sign in the expression for the dot–wire coupling depends on whether the dot and
the wire states have the same parity or not.

In the case of a far-field pumping cycle we start (say) with very high barriers and then
lower one of them, say X1. If we neglect the dot–wire coupling W12, the dot level would cross
the wire level at a point X1 = X(n) that can be determined from the equation E1 + W11 = E2.
At the vicinity of the avoided crossing, we obtain

|W12| = 1

2π
(bg(n))1/2� (50)

where

g(n) =
(

1

vE
X(n)

)−2

. (51)

From the condition |W12| � � we deduce equation (26) which defines our X region of
interest. Furthermore, from the results of the previous section we obtain expressions for the
splitting and for the mixing of the levels:

�s = bg(n) 1

2L
||X − X(r)|| (52)

sin(θ) = 2√
bg(n))

vE

||X − X(r)|| . (53)
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We use the following notation, which we regard as a measure for the distance of the pumping
cycle from the nearby degeneracy:

||X − X(r)|| =

√√√√
(X1 − X(n))2 +

4

b

(
vE√
g(n)

)2

. (54)

The significance of this notation will be further clarified in the next section where we extend
the analysis into the near-field region.

9. Near-field analysis

The unperturbed Hamiltonian in the near-field analysis corresponds to X1 = X2 = X(r). We
can find a rough approximation for X(r) using the analysis of the previous section, but in fact
we can find the exact expression which is derived in the appendix, where we also define the
obvious notation kr and g(r). For later calculation, the following approximation is useful:

X(r) ≈ vE√
g(r)

. (55)

The unperturbed basis consists of the dot-like definite parity state |1〉 and the wire-like definite
parity state |2〉. We recall that for these states 	 attains its extremal values as remarked at the
end of the appendix. The energies of the unperturbed states are

E1 = E2 = Er = 1

2m
k2
r (56)

and the perturbation matrix is

W11 = bg(r) 1

2L
(δX1 + δX2) (57)

W22 = g(r) 1

2L
(δX1 + δX2) (58)

|W12| =
√

bg(r) 1

2L
|δX1 − δX2| (59)

where

δX1 = X1 − X(r) (60)

δX2 = X2 − X(r). (61)

Consequently, we can determine both the splitting and the mixing of the levels:

�s = bg(r) 1

2L
||X − X(r)|| (62)

sin(θ) = 2√
b

|X1 − X2|
||X − X(r)|| . (63)

In the above expression, we have extended the interpretation of the distance measure as follows:

||X − X(r)|| =
√

(X1 + X2 − 2X(r))2 +
4

b
|X1 − X2|2. (64)

Now we realize that the far-field results of the previous section are formally a saturated version
of the near field results with

|X1 − X2|∞ = vE√
g(n)

. (65)
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10. The expressions for G

We are now ready to calculate G from equation (6). There are of course G31 and G32 but
the expressions look alike so we concentrate, say, on the case X = X1 and suppress the node
indication subscript whenever possible. By definition F = −∂H/∂X = δ(x̂ − x1). The
current operator has been defined in equation (2), but we still have the freedom to set x0 as we
want. So, the natural choice for the sake of calculation is obviously x = x1. We shall expand
later on the results that would be obtained if the current were measured via a different section.
The matrix elements of the operators involved are

Fnm = − 2

L

√
q

(n)
D q

(m)
D sin

(
ϕ

(n)
D

)
sin

(
ϕ

(m)
D

)
Inm = i

e

mL

√
q

(n)
D q

(m)
D

[
kn + km

2
sin

(
ϕ

(m)
D − ϕ

(n)
D

)
+

kn − km

2
sin

(
ϕ

(m)
D + ϕ

(n)
D

)]
.

(66)

One should note that Fnm is real and symmetric with respect to n ↔ m interchange, while
Inm is antisymmetric and purely imaginary as implied by time-reversal symmetry. Once we
sum equation (6) over all the occupied levels, nm terms cancel with mn terms. Within the
framework of the ‘two-level approximation’ the only remaining term involves the occupied
level n and the next empty level m = n + 1

G31(X1, X2) = 2
Fmn Im[Inm]

�2
s

. (67)

We recall the following expressions:√
q

(+)
D q

(−)
D ≈ b

2
|sin(θ)| (68)

ϕ
(+)
D ≈ ϕ

(−)
D ≈

[
1

4
g

]1/2

(69)

∣∣ϕ(+)
D − ϕ

(−)
D

∣∣ ≈ 2√
b

[
1

4
g

]1/2 1

|sin(θ)| . (70)

Upon substitution we realize that both in the near and in the far field we can neglect the second
term in the expression for Inm. Consequently,

G31(X1, X2) = −1

4
(gb)3/2 evE

L2

1

�2
s

| sin(θ)| = −2evE

b
√

g

|X1 − X2|
||X − X(r)||3 . (71)

We observe that in the near field, where ||X − X(r)|| is essentially the Euclidean measure of
distance, we get the field of a Dirac monopole as expected. But as we go to the far field, the
|X1 − X2| contribution saturates as explained in the previous section.

11. The calculation of Q

Having found G31 and a similar expression for G32 we can perform the integration of
equation (4) in order to obtain Q. We already pointed out that most of the contribution in
the regions of our interest comes from the avoided crossings. In the near field it is most
convenient to make the integration along X1 − X2 = ±const segments, while in the case of
the far field we make the integration along X2 = ∞ and X1 = ∞ segments.

It is not difficult to realize that in the near-field calculation both segments (X1 − X2 =
±const) give the same contribution. This means that we simply have to do one of the integrals
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and to multiply by 2. But in the far field one should be more careful. If we measure the
current in the middle of the dot (as indeed done in the numerics) then the same rule applies.
But if we measure the current (say) at node 1, then the predominant contribution to Q comes
obviously from the X2 = ∞ segment, so the result should not be multiplied by 2. Performing
a straightforward calculation of the dX integral, using∫ +∞

−∞

dx

(x2 + a2)3/2
= 2

a2
(72)

and taking the above discussion into account, we get in the near field

Q ≈ X(r)

|X1 − X2|e. (73)

One can show that this result is in agreement with the rough estimate of equation (14).
However, in the far field we have to substitute the saturated value of |X1 − X2| leading to the
result Q ≈ e.

The calculation in the far field does not care whether the pumping cycle encircle a � = 0
degeneracy or a � = π degeneracy. It is only in the near field of X(r) that we see the difference.
This is clearly confirmed by the numerics (figure 4). But a closer look reveals that the far-field
numerical result for Q is somewhat smaller than 1. This might look like a contradiction with
respect to the general expectations. The resolution of this puzzle is related to the limitation of
the far-field perturbative treatment. Within the framework of this treatment 	(n) changes from
	(n) = π to 	(n) = 0 as we lower (say) the X1 barrier. But in fact we know from section 8 that
	 is bounded. This means that not all the probability gets into the dot region. Consequently,
if we integrate along the X2 = ∞ segment, we expect to get Q < e as observed. On the other
hand, in the case of a full pumping cycle, we have to cross from the X2 = ∞ segment to the
X1 = ∞ segment. This was neglected in our calculation. Thus, if we had a full cycle we
would expect to get Q ≈ e in the far field as implied by the Dirac chains picture.

12. Discussion

We were able to derive an estimate for Q in the case where the pumping cycle is dominated
by a single degeneracy. Within this framework, we can still distinguish between near-field
(where Q � e) and far-field (where Q ∼ e) regions. Our results are in agreement with those
of [3]. We note that an optional derivation of the near-field limit has been introduced in [10]
using an extension of the BPT scattering formalism. But the latter derivation was not suitable
to reproduce the far-field result because it has been assumed there that the charge cannot
accumulate in the dot region.

It should be re-emphasized that the results that we have obtained assume that the pumping
cycle is dominated by a single degeneracy. In a follow-up work [15], we shall discuss
the case where the charge transport involves many levels, such that the contribution of
neighbouring levels (in equation (6)) is negligible compared with the contribution that comes
from |m − n| > 1 levels.

The results that we obtain for a closed geometry are very different from those that are
obtained for an open geometry. This is because the motion of the electron is ‘recycled’. In a
more technical language this means that multiple rounds should be taken into account in the
calculation of correlation functions. Reference [16, 4] further discuss how the Kubo formula
can be used in order to interpolate these two extreme circumstances.

It should be clear that adiabatic transport becomes counter-intuitive if one adopts a
misleading zero-order point of view of the adiabatic process. Moreover, even within the
‘two-level approximation’ it would not be correct to say that Q is determined by peristaltic



Quantum pump in a closed circuit 3591

mechanism: namely, it is not correct to say that charge transfer is regulated by the Landau–
Zener transitions.

A peristaltic mechanism would imply Q ∼ e. In the near field, we have Q � e so we
do not have such mechanism for sure. This is also reflected by having the same I at both
nodes as discussed in the paragraph of equation (73). However, even in the far field, where
the peristaltic picture seems natural, we have realized that it is an over-simplification: also in
the case of a far-field cycle a finite fraction of Q is contributed during the intermediate stages
of the pumping cycle.
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Appendix. Finding the degeneracy points

If system is symmetric (X1 = X2 = X) then we can distinguish between odd and even states
leading to the following eigenvalue equations:

cot(kLD/2) + cot(kLW/2) = −2m

k
X odd states (A.1)

tan(kLD/2) + tan(kLW/2) = +
2m

k
X even states. (A.2)

As we lower X we have an exact crossing whenever a dot state crosses a wire state with the
opposite parity. We have an avoided crossing whenever a dot state tries to cross a wire state
with the same parity. The latter becomes an exact crossing if the flux through the ring is
half-integer.

We can determine the degeneracy points by equating (A.1) with (A.2). This gives
sin(kLW) = − sin(kLD). For half-integer flux it is convenient to use delta gauge on the
middle of the wire, so as to get there π phase jump boundary conditions. This implies that
in the above equation we make the replacement (kL/2) �→ (kL/2) + (π/2), hence getting
the degeneracy condition sin(kLW) = + sin(kLD). We therefore conclude that we have
degeneracies for

kr = π

LW − LD
nr . (A.3)

They are categorized into � = 0 degeneracies for nr = 1, 3, 5, . . . and � = π degeneracies
for nr = 2, 4, 6, . . . . Their location is (X(r), X(r)) where

X(r) = −kr

m
cot(krLD). (A.4)

Accordingly,

g(r) = g(X(r)) = sin2(krLD) = sin2(krLW). (A.5)

At a degeneracy point, the mixing parameter 	 that characterizes the odd and the even
states attains the extremal values which are allowed by equation (27). This can be
verified by deducing qW/qD from equation (22) with ϕD = krLD/2 for the odd state and
ϕD = (π/2) + krLD/2 for the even state.
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