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Abstract
We find an exact expression for the current that is induced in a three-site ring
during a multiple-path adiabatic crossing. The understanding of the dynamics
requires us to go beyond the two-level phenomenology. In particular we
highlight a prototype process, ‘adiabatic metamorphosis’, during which current
is flowing through a non-accessible site. This helps to understand the crossover
from coherent non-classical splitting to stochastic noisy-alike partitioning of
the current.

PACS numbers: 03.65.−w, 05.45.Mt, 73.23.−b

(Some figures may appear in colour only in the online journal)

1. Introduction

Adiabatic quantum transport [1–5] is a major theme in quantum mechanics, with diverse
applications, e.g. quantum Hall effect [6], dynamics of Josephson junctions [7] and the analysis
of pericyclic reactions [8]. If a parameter is slowly varied in a closed system that has a non-
trivial topology, say a ring-shaped device, the formalism implies that current is induced. In the
absence of magnetic fields, we call such an effect ‘quantum stirring’ [9–12]. On the one hand,
it is related to the classical problem of ‘stochastic stirring’ [13–16], and on the other hand, it
is related to ‘quantum pumping’ in open systems [17–24].

Most results regarding adiabatic quantum transport are rather abstract, based on a formal
mathematical approach, notably the ‘Dirac monopoles picture’ [4, 9]. This should be contrasted
with the analysis of stochastic stirring where the phenomenology is quite mature [13]. The way
to gain better physical insight is to analyze prototype model systems [11, 12] and to identify
the elementary ingredients that determine the nature of the dynamics.

In this work, we would like to address the minimal model for a closed isolated quantum
system that has a non-trivial topology. This is evidently the three-site ring that is illustrated in
figure 1. Quite generally, in the absence of magnetic field, the stationary states of the system,
and the ground state in particular, carry zero current. If we want to obtain current, we have to
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Figure 1. Two-site and three-site toy models for transport. A particle is initially positioned at the
left site |0〉, called ‘dot’. The dot has a potential energy u that can be controlled externally. As u
is varied adiabatically from −∞ to +∞, currents are induced in the bonds, and the particle ends
up at the right sites. In the case of a three-site system, it is a multiple-path transition through the
0 � 1 and 0 � 2 bonds to the lower level of the ‘wire’.

drive the system by varying a parameter u in time. In the adiabatic limit, the current is given
by the following formula:

〈I〉 = G(u(t))u̇, (1)

where G(u) is the geometric conductance

G(u) = 2Im

[〈 ∂

∂φ
�

∣∣∣ ∂

∂u
�

〉]
φ=0

. (2)

In the above formula, � is the adiabatic ground state that depends on the parameter u, and on
an auxiliary test flux φ through the bond of interest.

Specifically, we want to consider the following scenario, which we call ‘multiple path
adiabatic crossing’. Assume that a particle is placed in the 0th site, which we call ‘dot’. The
potential of the dot is raised slowly from u = −∞ to u = +∞. As a result the particle is
adiabatically transferred from the dot to the other two sites. These two sites (‘1’ and ‘2’) can
be regarded as a two-orbital entity that we call ‘wire’. At the end of the process, the particle
will be found in the lower energy level of the wire. We ask what is the current through the first
bond (0 � 1). Equivalently, we can characterize the transport by the integrated current

Q(u) =
∫ u

−∞
G(u′) du′. (3)

In particular, we define Q ≡ Q(∞). If we had single-path geometry obviously the result for
the latter would be Q = 1, reflecting 100% transition probability. But we are dealing here with
a multiple path geometry.

At this point, it is important to emphasize that if we were dealing with a stochastic
process the current would be partitioned between the paths, hence |Q| < 1. But the essence
of ‘quantum stirring’ is the observation that during the driving process a circulating current is
induced. Due to this circulation, the integrated current can be any number.

The above recipe equation (2) for calculating adiabatic currents is well known from the
works on adiabatic transport, but its physical implications have not been fully recognized. In
fact, the original interest in this model has been motivated by a wrong assertion that ‘adiabatic
pumping’ in a closed system has to be quantized [27]. The fallacy of this statement has been
illuminated using the ‘Dirac monopoles picture’ [9] and later using a two-level ‘splitting ratio’
phenomenology [12, 28]. The exact solution of the three-site ring has been considered as well
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[9], to establish that Q of a closed driving cycle can have any value. However, the full solution
of the multiple-path adiabatic crossing has not been explored. In particular, it has remained
vague whether to go beyond the two-level approximation is of any physical significance.

Outline.–We first derive an exact expression for Q(u). This is quite straightforward,
but as usual the exact expression is not very illuminating physically. We therefore try
to derive approximations that are based on a two-level phenomenology. Then we realize
that there are different regimes depending on the ratio between the inter dot-wire and the
intra-wire couplings. In particular, we find a regime where the crossing process involves an
‘adiabatic metamorphosis’ stage, during which current is flowing through the energetically
non-accessible dot.

2. G(u) for a two-site system

We start with the analysis of a single-path crossing in a two-site system. The Hamiltonian and
the associated current operator are

H �→
(

u(t) C∗

C uc

)
, I �→ λ

(
0 iC∗

−iC 0

)
, (4)

where u(t) is the potential of the dot, uc is the level that is crossed and C is the dot-level
coupling. The extra parameter λ = 1 is reserved for later. Without loss of generality, we
assume C to be real and positive C > 0. For the purpose of defining the current operator
I ≡ −∂H/∂φ, and later using equation (2), one should substitute C �→ Ceiφ .

For a given value of u the energy of the adiabatic ground state is

E(u) = 1
2 [(u + uc) −

√
4C2 + (u − uc)2]. (5)

The corresponding eigenstate is

|�〉 �→ 1√
S

(
E − uc

Ceiφ

)
(6)

where the normalization factor for zero flux is

S = (E − uc)
2 + C2. (7)

Using equation (2) we obtain

G(u) = C2 ∂

∂u

[
1

S

]
(8)

leading to

G(u) = λ
2C2

(4C2 + (u − uc)2)3/2
, (9)

where λ = 1. It is easily verified that upon integration Q = λ, hence Q = 1, as implied by the
continuity equation for a single-path adiabatic crossing.

3. G(u) for a three-site system

We now use the same procedure for the analysis of the double-path crossing in a three-site
system. The Hamiltonian and the associated current operator are

H �→
⎛
⎝u(t) c∗

1 c∗
2

c1 0 c∗
0

c2 c0 0

⎞
⎠ , I �→

⎛
⎝ 0 ic∗

1 0
−ic1 0 0

0 0 0

⎞
⎠ . (10)
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We assume the cs to be real (no magnetic field) but for the purpose of defining the current
through the 0 � 1 bond, and later using equation (2), we substitute c1 �→ c1eiφ .

The secular equation for the eigenvalues is

E3
n − uE2

n − (
c2

0 + c2
1 + c2

2

)
En + c2

0u − 2c0c1c2 cos(φ) = 0 (11)

with the solution

En = u

3
+ 2

√
Q cos

(
θ

3
+ n

2π

3

)
, n = 0,±1, (12)

where

cos(θ ) ≡ R√
Q3

(13)

Q ≡ 1

9
u2 + 1

3

(
c2

0 + c2
1 + c2

2

)
(14)

R ≡ 1

27
u3 + 1

6

(
c2

1 + c2
2 − 2c2

0

)
u + c0c1c2 cos(φ). (15)

As u is varied from −∞ to +∞, the angle θ varies from π to 0, and the ground state energy
E1 goes from −u to −c0. The corresponding eigenstates are

|n(u)〉 �→ 1√
Sn

⎛
⎝ E2

n − |c0|2
c1En + c∗

0c2

c2En + c0c1

⎞
⎠ . (16)

The normalization factor for zero flux is

Sn = (
E2

n − c2
0

)2 + (c1En + c0c2)
2 + (c2En + c0c1)

2 (17)

= E4
n + (

c2
1 + c2

2 − 2c2
0

)
E2

n + 2c0c1c2En + c2
0

(
c2

0 + c2
1 + c2

2

)
. (18)

If we placed the test flux at the c0 bond we would obtain from equation (2) the result that had
been derived in [9] for the current in the 1 � 2 bond, namely

G1�2(u) = c2
0

(
c2

1 − c2
2

) ∂

∂u

[
1

S1

]
. (19)

But our interest is in the current that goes through the 0 � 1 bond. Accordingly, we have
placed the test flux at c1 and obtain

G = 2
[
c2

1E1 + c0c1c2
] 1

S1

∂E1

∂u
− [

c2
1E2

1 + 2c0c1c2E1 + c2
0c2

1

] 1

S2
1

∂S1

∂u
(20)

= d

du

[
c2

1E2
1 + 2c0c1c2E1 + c2

0c2
1

E4
1 + (

c2
1 + c2

2 − 2c2
0

)
E2

1 + 2c0c1c2E1 + c2
0

(
c2

0 + c2
1 + c2

2

)
]

. (21)

4. The integrated current

On the basis of equation (21) one observes that for any c0 �= 0 the integrated current equation (3)
at the end of the process is

Q = c2
1E2

1 + 2c0c1c2E1 + c2
0c2

1

E4
1 + (

c2
1 + c2

2 − 2c2
0

)
E2

1 + c0 · · ·

∣∣∣∣∣
E1=−c0

= c1

c1 − c2
. (22)
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Figure 2. An initially loaded level crosses the other two levels of a three-site network. We plot the
parametric variation of the integrated current Q(u) in representative cases. For graphical purpose,
the horizontal axis is Q1/2. The parameters are c0 = 1 and (c1, c2) as follows: solid blue (0.2, 0.15)

is like a simple two-level crossing; dashed blue (5.0, 4.3) exhibits a shifted two-level crossing;
solid green (19, 17) features a sharp metamorphosis; dashed green (19, −17) features a gradual
metamorphosis.

Strangely enough, this does not depend on the value of c0. But for c0 = 0, based on the same
expression, the result is quite different

Q = c2
1

E2
1 + (

c2
1 + c2

2

)
∣∣∣∣∣
E1=0

= |c1|2
|c1|2 + |c2|2 . (23)

It is therefore required to explain what happens physically if c0 is very very small but not
zero. In figure 2, we illustrate Q(u) for several representative cases. If c0 is large Q(u) rises
monotonically in a step-like fashion to the value that is predicted by equation (22). However,
if c0 is small one observes two stages in the parametric evolution: first Q(u) rises to the value
that is predicted in equation (23), and only after that it re-adjust to the value of equation (22).
In Section 9, we shall use the term ‘adiabatic metamorphosis’ in order to describe this re-
adjustment of the occupations. We shall see that it involves a much larger parametric scale
um ∝ 1/c0 that diverges in the limit c0 → 0. Hence, for c0 = 0, we are left with equation (23)
instead of equation (22). A closer inspection of the metamorphosis stage (dashed versus solid
green curves in figure 2) reveals that it can be either a gradual or a sharp transition, depending
on the relative sign of c1 and c2.

The values (c1, c2) for the illustrations in figure 2 are indicated in the diagram of figure 3.
In the following sections, we would like to illuminate the different regions in this diagram by
attempting a two-level approximation scheme.

5. The two-level approximation

Let us try to reduce the three-level dynamics to a two-level crossing problem. For this purpose,
we switch to the following basis:

|0〉 = the dot state (24)

|+〉 = 1√
2
(|1〉 + |2〉) = the upper (even) wire state (25)

|−〉 = 1√
2
(|1〉 − 2〉) = the lower (odd) wire state. (26)
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Figure 3. A schematic diagram that shows the different regimes in the analysis of the adiabatic
double-path crossing. Setting c0 = 1 the parameters that define the three-site system are the
couplings c1 and c2. Without loss of generality, we relate to one quarter where both c+ and c−
are positive. Gray shading indicates the regime where a two-level approximation scheme can be
used, either c− 
 c0 or c+ 
 c0, as discussed in the text. In each regime, the G(u) has a different
looking lineshape. Blue and green symbols indicate the representative illustrations that have been
displayed in figure 2.

In the new basis, the Hamiltonian and the current operator equation (10) take the following
form:

H �→
⎛
⎝u(t) c+ c−

c+ c0 0
c− 0 −c0

⎞
⎠ , I �→ c1√

2

⎛
⎝ 0 i i

−i 0 0
−i 0 0

⎞
⎠ (27)

with couplings

c± = 1√
2
(c1 ± c2). (28)

Without loss of generality, we focus on the strongest bond, meaning that we assume |c1| > |c2|,
and by appropriate gauge we arrange that c1 > 0, hence both c± are positive numbers. We
shall see that a two-level approximation scheme is useful for the treatment of three cases that
are indicted in figure 3, namely

|c+| 
 c0 (29)

|c−| 
 c0 (30)

c0 = 0. (31)

In all these cases, we can fit the exact result equation (21) to the two-level expression
equation (9), with some effective values for C, uc and λ. The remaining case of having a
relatively small but finite c0 is excluded, because it cannot be treated within the framework of
a two-level approximation. This last case will be considered separately.

6. The simple two-level approximation |c+| � c0

We first consider the very simple case, in which the third (upper) level can be ignored. The
condition for that is |c+| 
 c0. Taking the relevant block from the 3 × 3 Hamiltonian of
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Figure 4. An initially loaded level crosses the other two levels of a three-site network. (a) The
adiabatic energies En(u) as a function of the dot potential. (b) The geometric conductance G(u)

during this sweep process, reflecting the current through the c1 bond. The thick blue line is the
exact solution equation (21). We use units such that c0 = 1. The parameters in set (1) are c1 = 0.2
and c2 = 0.15, corresponding to the regime |c+| 
 c0, where the simple two-level approximation
(thin black line) applies. Vertical dashed line indicates the dot-wire crossing point. The parameters
in set (2) are c1 = 5.0 and c2 = 4.3, corresponding to the regime |c−| 
 c0, where a shifted
two-level approximation (thin black line) applies. Vertical dashed line indicates the shifted crossing
point. Note: the agreement is so good that the thin black lines almost cannot be resolved.

equation (27) one obtains a reduced 2 × 2 Hamiltonian that is given by equation (4) with the
effective parameters

λ = c1

c1 − c2
, C = c1 − c2√

2
, uc = −c0. (32)

Hence, we deduce that G(u) of equation (9) can be used as an approximation for the exact
result. This expectation is confirmed in figure 4.

The presence of λ reflects that the flow is via two bonds instead of via only a single bond,
unlike the case of the two-site model. In other words, the particle ‘splits’ and flows through
both bonds. We note that the integrated current Q = λ can have a manifestly non-classical
value: it can be either larger than 1 or negative. In fact, if it is larger than 1 in one bond it
has to be negative in the other bond, since the total corresponds to 100% probability of being
adiabatically transferred. The non-classical value of λ reflects a circulating current that is
induced during the transition. In a semi-classical language, it means that the particle is looping
several rounds through the ring before ending up in the wire.
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7. The shifted two-level approximation |c−| � c0

The simple two-level approximation of the previous section is not valid if |c+| > c0. Still if
|c−| 
 c0, we can obtain a result that looks like equation (9). The solution procedure involves
two steps. In the first step, we switch to a new basis:

|θ〉 = cos(θ/2)|0〉 + sin(θ/2)|+〉 (33)

|θ̄〉 = −sin(θ/2)|0〉 + cos(θ/2)|+〉 (34)

|−〉 = the lower (odd) wire state, (35)

where

θ (u) = arctan

(
2c+

u − c0

)
. (36)

In this basis, the block of the Hamiltonian equation (27) that contains the strongly interacting
states |0〉 and |+〉 becomes diagonal. Now it is possible to neglect the upper level |θ〉 and we
obtain a two-level crossing problem that involves the ‘dressed’ dot level |θ̄〉 and the lower
(odd) wire level |−〉. The adiabatic energy of the former is

Eθ̄ = 1
2 [(u + c0) −

√
4c2+ + (u − c0)2] (37)

while that of the latter is E− = −c0. Accordingly the shifted crossing point is

uc =
[
−1 + 1

2

(
c+
c0

)2
]

c0. (38)

The stronger the coupling c+ to the upper level, the larger is the shift of uc.
In order to estimate the effective parameters of the shifted two-level crossing, we have to

write the Hamiltonian and the current operator in the new basis. In the vicinity of the crossing
point, we set θc = θ (uc), obtaining

H �→
(

[u sin2(θc/2) + c0 cos2(θc/2) − c+ sin(θc)] −c− sin(θc/2)

−c− sin(θc/2) −c0

)
(39)

and

I �→ λ

(
0 −ic− sin(θc/2)

ic− sin(θc/2) 0

)
, (40)

where λ is the same as in the previous section. It is important to realize that up to constant the
effective dot potential equals αu with α = sin2(θc/2). It is not difficult to see that this implies
the replacement

G(u) �→ αG(αu). (41)

Hence, within the framework of the two-level approximation the effective C in equation (9) is
not −c− sin(θ/2) but rather it should be divided by α. So eventually we deduce that the G(u)

can be approximated by equation (9) with an effective coupling parameter

C = −
[

sin

(
θc

2

)]−1

c−. (42)

This expectation is confirmed in figure 4. Note again that λ is the same as in the simple
two-level approximation, and that we evaluate θc at the crossing point using equation (36) with
equation (38).
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8. Adiabatic crossing for c0 = 0

In the previous versions of the two-level approximation, the intra-wire coupling c0 was large
in some sense. Now we go to the other extreme limit of having c0 = 0. This resembles the
standard setup that is used in the analysis of stimulated Raman adiabatic passage. In fact, we
can adopt here the same ‘dark state’ picture in order to reduce the problem to a two-level
crossing. Namely, for this purpose we switch to the following basis:

|0〉 = the dot state (43)

|C〉 = 1√
c2

1 + c2
2

(c1|1〉 + c2|2〉) (44)

|D〉 = 1√
c2

1 + c2
2

(c2|1〉 − c1|2〉) = dark state. (45)

In the new basis |D〉 state decouples, and hence we end up again with a reduced 2 × 2
Hamiltonian that is given by equation (4) with the effective parameters

λ = c2
1

c2
1 + c2

2

, C =
√

c2
1 + c2

2, uc = 0. (46)

Hence we deduce that G(u) of equation (9) with the above set of effective parameters coincides
in this case with the exact result.

It should be clear that for c0 = 0, we no longer have a non-trivial geometry, and hence
a circulating current cannot be induced. For this reason, it is a priori expected to obtain an
effective two-level description with λ ∈ [0, 1]. In fact, we got for λ a stochastic look-alike
expression that reflects the relative transmission of the two bonds.

9. Adiabatic metamorphosis

Let us contrast the c0 = 0 case with the c0 → 0 case. The two cases give very different
results. We would like to better clarify what really happens if c0 is very small. We first recall
the optional bases for the representation of the system. The standard basis is |0〉, |1〉, |2〉.
The wire-eigenstates basis is |0〉, |+〉, |−〉, and the c0 = 0 basis is |0〉, |C〉, |D〉. For the
instantaneous eigenstates, we shall use the notations |Eg〉, |Ed〉 and |Ee〉.

Recall that for c0 = 0 the dark state |D〉 decouples, meaning that |Ed〉 = |D〉, while
the other two eigenstates |Eg〉 and |Ee〉 are superpositions of |0〉 and |C〉. At the end of an
adiabatic process, the system will be found in the degenerate |Eg〉 = |C〉 state. However, if c0

is non-zero, the system ends up in the non-degenerate |Eg〉 = |−〉 state.
It is therefore clear that for very small but finite c0 the adiabatic ground state changes

from |C〉 to |−〉. We call this ‘adiabatic metamorphosis’. We define um as the value of u at
which this metamorphosis occurs. Close to um the dot level is energetically far above, hence
the lower states |1〉 and |2〉 form a two-level system with virtual coupling through the distant
dot level. The reduced Hamiltonian is determined by second-order perturbation theory:

H �→

⎛
⎜⎜⎝

c2
1

u
c0 − c1c2

u

c0 − c1c2

u

c2
2

u

⎞
⎟⎟⎠ . (47)

By inspection of this Hamiltonian it is clear that for large enough u the direct coupling c0

takes over, and then the metamorphosis to |Eg〉 = |−〉 is finalized. In particular, it is interesting

9
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to consider the case in which c2 ∼ c1. Then the metamorphosis crossing point is sharply
defined

um = c1c2

c0
, [for sharp metamorphosis] (48)

which is demonstrated in figure 5. Otherwise the metamorphosis is a gradual process, as was
illustrated in figure 2. Note that for sharp metamorphosis, at u = um, all the probability is
concentrated in one site of the wire, namely, in the site that is more strongly connected to the
dot. This is demonstrated in panel (c) of figure 5.

10. Beyond the adiabatic limit

In order for the process to be adiabatic the probability distribution should change slowly with
time. This implies that the current cannot be very large. Let us see what is the precise statement.
Specifically, for a two level Landau–Zener crossing the adiabatic condition is

u̇ 
 C2, (49)

where C is the coupling between the dot and the crossed level. This implies that

Imax ∼ G(uc)u̇max ∼ C. (50)

One observes that the maximal current reflects the coupling. Furthermore, also the integrate
current cannot be too large. It is simply bounded by unity (|Q| < 1) reflecting that the maximum
transfer is 100%.

If we consider multiple path geometry, it is easy to show that the conclusion regarding
the maximal current still holds. However, as was clarified in previous sections, the integrated
current Q = λ becomes arbitrarily large if c1 ∼ c2, rather than being bounded. A large value
|Q| > 1 reflects the existence of a circulating current that is induced in the system during the
driving process. It should be clear that in order to witness |Q| � 1 one has to satisfy a very
demanding adiabatic condition, because the effective coupling that enters into equation (49)
is C = (c1−c2)

√
2.

Within the conventional framework of the two-level approximation, the implication of
non-adiabaticity is to have less than 100% probability to cross from the dot to the wire,
as implied by the Landau–Zener expression [25, 26]. But for very small c0, such that the
metamorphosis scenario applies, the implications of non-adiabaticity are more interesting as
explained below. For finite u̇ there is a finite range of small c0 values for which the result for
Q is approximately the same as for c0 = 0. The complementary statement is as follows: for a
given c0, if u̇ is large enough, the system does not have enough time to realize that it is coupled
to a ‘dark state’. Roughly this non-adiabatic condition takes the form u̇ > c2

0. Thus, we have
an intermediate ‘diabatic’ regime c2

0 
 u̇ 
 C2 where the dynamics is ‘adiabatic’ with regard
to the crossing, but ‘sudden’ with regard to the metamorphosis. The bottom line of the above
discussion is illustrated in figure 5. One observes that for mild values of u̇ the metamorphosis
stage is not expressed, and the dynamics looks like that of c0 = 0 system.

11. Discussion

Transport in quantum networks is a theme that emerges in diverse contexts. The simplest
network that has non-trivial topology is the three-site system that we have considered in this
paper. It can be regarded as composed of ‘dot’ and ‘wire’ segments. The most elementary
process that has to be understood is an adiabatic sweep of the potential energy of a selected
site (the dot), leading to the transfer of the probability to the other sites (the wire). Unlike
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Figure 5. The same as in figure 4 but with c1 = 19 and c2 = 15, illustrating a sharp metamorphosis.
The additional panel (c) shows the parametric variation of the occupation probabilities. In (b) the
black line is the c0 = 0 solution. The thinner (green) and the thinnest (red) lines are I/u̇ for u̇ = 2
and for u̇ = 50, as determined by numerical simulation. The left and right vertical lines indicate the
dot-wire crossing point, and the metamorphosis point, with separation (um − uc) = 286. During
the adiabatic metamorphosis, a current is flowing through the energetically distant dot. Mild non-
adiabaticity spoils the metamorphosis without affecting the dot occupation.
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stochastic process in which the probability current is partitioned with branching ratios that
are bounded within [0, 1], here the splitting ratio λ can be any number reflecting a quantum
stirring effect.

The detailed analysis of the three-site model allows us to highlight several essential
ingredients in the analysis of quantum transport. In particular, it was important to clarify what
is the way in which the two-level approximation breaks down. Strangely enough, the splitting
ratios are independent of the intra-wire coupling, but still the G(u) line shape is strongly
influenced.

In particular, we have distinguished between two types of processes: inter dot-wire
‘adiabatic crossing’ processes and intra-wire ‘adiabatic metamorphosis’ processes. In the
former, probability is transported between the dot and the wire, while in the latter the changes
in the occupation are exclusively within the wire. During the metamorphosis stage the dot
level is very far from the wire levels, but still current flows through the inter-connecting bonds,
without being accumulated in the dot.

We believe that the processes that we have illuminated are of much relevance, and
might shed new light, on the analysis of pericyclic reactions [8]. In this context, the method
of calculating electronic quantum fluxes had assumed that the latter can be deduced from
the continuity equation. Such procedure is obviously not applicable for (say) a ring-shaped
molecule: due to the multiple path geometry there is no obvious relation between currents and
time variation of probabilities.

Furthermore, it is important to understand how non-adiabaticity and decoherence affect
adiabatic transport. Possibly the most dramatic demonstration concerns the suppression of
metamorphosis processes by mild non-adiabaticity. Then we obtain instead of coherent
splitting, stochastic-like partitioning of the current. The reason for this crossover can be
optionally explained using a very general paradigm. Namely, once the intra-wire couplings
are introduced, there is a protecting ‘gap’ that becomes effective if the rate of the sweep
is slow enough; this protecting gap forces the particle to be in a definite superposition at
any moment. It follows that coherent splitting, unlike ‘partitioning’ of current is not a noisy
process. This observation has implications on the calculation of ‘counting statistics’ and ‘shot
noise’ [29, 28].
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