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Abstract

Pumping of charge (Q) in a closed ring geometry is not quantized even in the strict adiabatic limit. The deviation form exact

quantization can be related to the Thouless conductance. We use the Kubo formalism as a starting point for the calculation of

both the dissipative and the adiabatic contributions to Q. As an application we bring examples for classical dissipative pumping,

classical adiabatic pumping, and in particular we make an explicit calculation for quantum pumping in case of the simplest

pumping device, which is a three site lattice model. We make a connection with the popular S-matrix formalism which has been

used to calculate pumping in open systems.
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Pumping of charge in mesoscopic [1] and molecular size

devices is regarded as a major issue in the realization of

future ‘quantum circuits’ or ‘quantum gates’, possibly for

the purpose of ‘quantum computing’. Of particular interest

is the possibility to realize a pumping cycle that transfers

exactly one unit of charge per cycle [2–5]. In open systems

this ‘quantization’ holds only approximately. But it has been

argued [4] that the deviation from quantization is due to

‘dissipative’ effect, and that exact quantization would hold

in the strict adiabatic limit, if the system were closed. In this

letter, we would like to show that the correct picture is quite

different. In particular, we would like to make a proper

distinction between ‘dissipative’ and ‘adiabatic’ contri-

butions to the pumping, and to calculate the deviation from

exact quantization in the latter case. As a starting point we

adopt the traditional Kubo formula [6], but we also point out

the relation to the ‘adiabatic’ [7,8] and to the ‘S-matrix’ [9]

formulations. The present formulation of the pumping
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problem has few advantages: It is not restricted to the

adiabatic regime; it give a ‘level by level’ understanding of

the pumping process; it allows the consideration of any type

of occupation (not necessarily Fermi occupation); It allows

future incorporation of external environmental influences

such as that of noise; it regards the ‘voltage’ over the pump

as ‘electro motive force’, rather than adopting the

conceptually complicated view [10] of having a ‘chemical

potential difference’. Finally, on the practical level, we give

a solution for the pumping in a three site lattice model. This

is definitely the simplest pump circuit possible, and we

believe that it can be realized as a molecular size device. It

also can be regarded as an approximation for the closed

geometry version of the two delta potential pump [5].

The structure of this letter is as follows: we show how to

get from the Kubo formalism an expression for the pumped

charge Q, and explain the distinction between ‘dissipative’

and the ‘adiabatic’ contributions. Then we give illuminating

examples for classical dissipative pumping and for classical

adiabatic pumping. Next we discuss the case of quantum

pumping, where the cycle is around a chain of degeneracies.

We show that this can be understood as a special case of
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‘adiabatic transfer’ scheme. In order to get a quantitative

estimate for the pumped charge we consider a three site

lattice model, where we express Q in terms of the Thouless

conductance. We conclude by a short discussion of the

relation between the Kubo formalism, the adiabatic

formalism, and the S-matrix formalism.

Consider a system that has a ring geometry (Fig. 1(a)).

The Hamiltonian is Hðx1ðtÞ; x2ðtÞ; x3ðtÞÞ, where x1 and x2

are parameters that control the shape of the ring, or the

height of some barriers, while x3ZFZZf is the magnetic

flux. We use units such that the elementary charge is unity.

The ‘generalized forces’ are conventionally defined as

FkhKvH=vxk. In particular hF3i is the current I through the

ring (see remark [16]). Consider for a moment the time

independent Hamiltonian HðxÞ, with xZconst, and assume

that the system is prepared in a stationary state (either pure

or mixed). The expectation value hFki of a generalized force

is known as the ‘conservative force’ or (in case of kZ3) as

the ‘persistent current’. The ‘fluctuations’ of the generalized

forces are conventionally characterized by the real func-

tions:

CijðtÞZ h
1

2
ðFiðtÞFjð0ÞCFjð0ÞFiðtÞÞi (1)

KijðtÞZ
i

Z
h½FiðtÞ; Fjð0Þ�i (2)

Note that both functions have a well-defined classical limit.

Their Fourier transform will be denoted by ~C
ij
ðuÞ and

~K
ij
ðuÞ, respectively.

Our interest in the following is in a driving cycle, where

xZx(t) forms a loop in the three dimensional parameter

space. In linear response theory [6] the non-conservative
Fig. 1. Illustration of a ring system (a). The shape of the ring is controlled

system with equivalent topology, and abstraction of the model are presen

depends on x1 and x2. In (d) also the flux x3 is regarded as a parameter of the

(e).
contribution to hFki is related to x(t) by a causal response

kernel aij(tKt 0) The Kubo expression for this response

kernel is aijðtÞZQðtÞKijðtÞ. Its Fourier transform is the

generalized susceptibility cij(u) From here we can derive

the expression hFkiZK
P

j G
kj _xj, where Gkj is the general-

ized conductance matrix:

Gij Z lim
u/0

Im½cijðuÞ�

u
Z

ðN
0
KijðtÞtdt (3)

Following Berry and Robbins [8] we split the con-

ductance matrix into symmetric and anti-symmetric parts.

Namely, GijZhijCBij. The anti-symmetric part B can be

regarded as a vector ~BZ ðB23;B31;B12Þ, and the expression

for the current can be written in an abstract way as

hFiZKh$ _xKBo _x.

The rate of dissipation, which is defined as the rate in

which energy is absorbed into the system, is given by
_WZKhFi$ _xZ

P
kj h

ij _xi _xj. Only the symmetric part of Gij is

responsible for dissipation of energy. The adiabatic regime

is defined by the condition j _xj/D2=Zs, where D is the

typical level spacing, and s is the root mean square value of

the matrix element ðvH=vxÞnm between neighboring levels.

In the adiabatic regime hij vanishes because of the

discreteness of the energy spectrum [8]. But outside of the

adiabatic regime the levels acquires an effective width G=D

ZððZs=D2ÞVÞ2=3O1 and therefore the smoothed version of
~K
ij
ðuÞ should be considered. Consequently one can obtain

the fluctuation-dissipation (FD) relation: hijw ~C
ij
ðuZ0Þ.

The formulation of the exact FD relation depends on the

assumptions regarding the occupation f(En) of the energy

levels. See Refs. [11,12]. Commonly one assumes a zero

temperature Fermi occupation, but this is not essential for
by some parameters x1 and x2. The flux through the ring is x3ZF. A

ted in (b) and (c). The ‘dot’ can be represented by an S matrix that

dot. If we ‘cut’ the wire in (d) we get the open two lead geometry of
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the following analysis. In order to derive the above

expression for G we have used the result of [11] (Section

17) for the ‘core width’ at the breaktime tZtprt of

perturbation theory. Note that in the semiclassical limit

(small Z) the adiabaticity condition always breaks down.

The anti-symmetric part B of Gij does not have to vanish

in the adiabatic limit. It can be obtained from the adiabatic

equation by looking for a first-order stationary-like solution

[2,3,8], but we prefer to regard it as a term in the (full) Kubo

expression Eq. (3). In [7,8] it has been demonstrated that it

can be written as

Bij ZK2Z
X
n

f ðEnÞImh
v

vxi
nðxÞj

v

vxj
nðxÞi

Z 2Z
X
msn

f ðEnÞ
Im vH

vxi

� �
nm

vH
vxj

� �
mn

h i

Em KEn

� �2
(4)

Note that the ‘vertical’ component of ~B vanishes in the

‘horizontal’ x3Z0 plane due to time reversal symmetry.

Disregarding a possible persistent current contribution

(that does not exist in the case of a planar FZ0 cycle), the

expression for the pumped charge is:

Q ¼#Idt ¼K #h,dxþ#Bodx

� �
k¼3

(5)

If we neglect the first term, which is associated with the

dissipation effect, and average the second (‘adiabatic’) term

over the flux, then we get

Qjadiabatic ¼K
1

2pZ

ðð
B$~dxo ~dx ¼ integer (6)

The integration should be taken over a cylinder of vertical

height 2pZ, and whose basis is determined by the projection

of the pumping cycle onto the (x1, x2) plane. The last

equality is argued as follows: The flux ð1=ZÞ
ÐÐ

B$dxodx

through a surface that is enclosed by a cycle is the Berry

phase [7]. The result should be independent of the surface.

Therefore, the flux through a closed surface should equal

2p!integer. Integrating over a cylinder, as in Eq. (6), is

effectively like integrating over a closed surface (because of

the 2p periodicity in the vertical direction). This means that

the flux averaged Q of Eq. (6) has to be an integer.

Before we discuss the quantum mechanical pumping, it

is instructive to bring two simple examples for classical

pumping. In the following we consider one particle (r) in a

two dimensional ring as in Fig. 1(a).

The first example is for classical dissipative pumping.

The conductance GZG33 can be calculated for this system

[12] leading to a mesoscopic variation of the Drude formula.

The current is IZKG! _F, whereK _F is the electro-motive-

force. Consider now the following pumping cycle: change

the flux from F1 to F2, hence pumping charge

QZKGð1Þ!ðF2KF1Þ. Change the conductance from

G(1) to G(2) by modifying the shape of the ring. Change

the flux from F2 back to F1, hence pumping charge
Qð2ÞZKGð2Þ!ðF1KF2Þ. Consequently, the net pumping

is QZ ðGð2ÞKGð1ÞÞ!ðF2KF1Þ.

The second example is for classical adiabatic pumping.

The idea is to trap the particle inside the ring by a potential

well Utrapðr1Kx1ðtÞ; r2Kx2ðtÞÞ. Then make a translation of

the trap along a circle of radius R, namely

xðtÞZ ðR cosðUtÞ; R sinðUtÞ; FZconstÞ. It is a-priori clear

that in this example the pumped charge per cycle is QZ1,

irrespective of F. Therefore the ~B field must be

~B ZK
ðx1; x2; 0Þ

2pðx2
1 Cx2

2Þ
(7)

This can be verified by calculation via Eq. (4). The

singularity along the x3 axis is not of quantum mechanical

origin: It is not due to degeneracies, but rather due to the

diverging current operator

vH=vx3f1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q� 	
:

We turn now to the quantum mechanical case. Consider

an adiabatic cycle that involves a particular energy level n.

This level is assumed to have a degeneracy point at

xð0Þ1 ; xð0Þ2 ;Fð0Þ
� �

. It follows that in fact there is a vertical

‘chain’ of degeneracy points that are located at

xð0Þ1 ; xð0Þ2 ;Fð0ÞC2pZ!integer
� �

. These degeneracy points

are important for the geometrical understanding of the B

field, as implied by Eq. (4). Every degeneracy point is like a

monopole charge. The total flux that emerges from each

monopole must be 2pZ!integer for a reason that was

explained after Eq. (6). Thus the monopoles are quantized in

units of Z/2.

The B field which is created (so to say) by a vertical

chain of monopoles may have a different ‘near field’ and ‘far

field’ behavior, which we discuss below. (Later we further

explain that ‘near field’ means regions in x space, in the

vicinity of degeneracy points, where gT[1, while ‘far

field’ means regions where gT/1). The far field regions

exist if the chains are well isolated. The far field region of a

given chain is obtained by regarding the chain as a smooth

line. This leads qualitatively to the same field as in Eq. (7).

Consequently, for a ‘large radius’ pumping cycle in the FZ
0 plane, we get jQjz1. In the following we are interested in

the deviation from ‘exact’ quantization: Iff(0)Z0 we expect

to have jQjR1, while iff(0)Zp we expect jQjR1. Only for

the f averaged Q of Eq. (6) we get exact quantization.

The deviation from jQjz1 is extremely large if we

consider a tight pumping cycle around a f(0)Z0 degen-

eracy. After linear transformation of the shape parameters,

the energy splitting DZEnKEm of the energy level n from

its neighboring (nearly degenerated) level m can be written

as DZ x1Kxð0Þ1

� �2
C x2Kxð0Þ2

� �2
Cc2 fKfð0Þ

� �2
� �1=2

where c is a constant. The monopole field is accordingly
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~B ZG
c

2

!
x1 Kxð0Þ1 ; x2 Kxð0Þ2 ; x3 Kxð0Þ3

� �
x1 Kxð0Þ1

� �2
C x2 Kxð0Þ2

� �2
C c

Z

� �2
x3 Kxð0Þ3

� �2
� �3=2

(8)

where the prefactor is determined by the requirement of

having a single (Z/2) monopole charge. Assuming a

pumping cycle of radius R in the FZ0 plane we get from

the second term of Eq. (5) that the pumped charge is

QZHp
ffiffiffiffiffi
gT

p
, where gTZ ðv2D=vf2Þ=DZc2=R2 is a practical

definition for the Thouless conductance in this context. It is

used here simply as a measure for the sensitivity of an

energy level to the magnetic flux F.

What we want to do in the following is to ‘interpolate’

between the ‘near field’ result, which is QZOð
ffiffiffiffiffi
gT

p
Þ, and

the ‘far field’ result, which is QZOð1Þ. For this purpose it is

convenient to consider a particular model that can be solved

exactly. We consider a ring with two barriers. The model is

illustrated in Fig. 2. A version of this model, where the two

barriers are modeled as ‘delta functions’, has been analyzed

in [5] in case of open geometry. Below we are going to

analyze a different version of the two barrier model, that

allows an exact solution for closed geometry.

We can classify the eigenstates of the closed ring into

two categories: wire states, and dot states (Fig. 2(a)). The

latter are those states that are localized in the ‘dot region’ in

the limit of infinitely high barriers. In case of zero

temperature Fermi occupation we define EF as the energy

of the last occupied wire level in the limit of infinitely high

barriers. The two ‘shape’ parameters are the bias x1, and the

dot potential x2. The bias determines whether the dot tends

to exchange particles via the left or via the right barrier. The

dot potential is loosely defined as the energy of the dot level

(Fig. 2(a)). A model specific definition of these parameters

in the context of the three site lattice Hamiltonian will be

given later.

The pumping cycle is assumed to be in the FZ0 plane,

so there is no issue of ‘conservative’ persistent current

contribution. We start with a positive bias (x1O0) and lower
Fig. 2. Schematic illustration of quantum pumping in a closed wire-dot syst

vanishingly small: As the dot potential is lowered an electron is taken from

side (second avoided crossing). Assuming that the bias is inverted before th

QZOð1Þ.
the dot potential from a large x2OEF value to a small x2OEF

value. As a result, one electron is transferred via the left

barrier into the dot region. Then we invert the bias (x1O0)

and raise back x2. As a result the electron is transferred back

into the wire via the right barrier. A closer look at the above

scenario (Fig. 2(b)) reveals the following: as we lower the

dot potential across a wire level, an electron is adiabatically

transferred once from left to right and then from right to left.

As long as the bias is positive (x1O0) the net charge being

pumped is very small (jQj/1). Only the lowest wire level

that participate in the pumping cycle carries QZOð1Þ net

charge: it takes an electron from the left side, and after the

bias reversal it emits it into the right side. Thus the pumping

process in this model can be regarded as a particular

example [3] of an adiabatic transfer scheme: the electrons

are adiabatically transferred from state to state, one by one,

as in ‘musical chair game’.

For a single occupied level the net Q is the sum of charge

transfer events that take place in few avoided crossings. For

many particle occupation the total Q is the sum over the net

Qs which are carried by individual levels. For a dense zero

temperature Fermi occupation the summation over all the

net Qs is a telescopic sum, leaving non-canceling contri-

butions only from the first and the last adiabatic crossings.

The latter involve the last occupied level at the Fermi

energy.

In order to get a quantitative estimate for the Q in a given

avoided crossing, we consider the simplest version of the

‘two barrier model’ that still contains all the essential

ingredients: This is a three site lattice system. The middle

site supports a single ‘dot state’, while the two other sites

support two ‘wire states’. The Hamiltonian is

H1

0 c1 eif

c1 u c2

eKif c2 0

0
B@

1
CA (9)

The three parameters are the bias x1Zc1Kc2, the dot

potential x2Zu, and the flux x3ZFZZf. For presentation

purpose we assume that 0!c1, c2/1. The eigenstates are

En. Disregarding the coupling between the ‘wires’ and the
em. The net charge via the third level (thick solid line on the right) is

the left side (first avoided crossing), and then emitted back to the left

e dot potential is raised back, only the second level carry a net charge
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‘dot’ we have two wire states with EZG1, and a dot state

with EZu. Taking into account the wire-dot coupling we

find that there are two vertical chains of degeneracies. The

uzK1 chain is ð0;K1Cc2
1; 2pZ!integerÞ and the uzK1

chain is ð0;C1Cc2
1;pC2pZ!integerÞ.

The eigenvalues En are the solutions of a cubic equation.

Rather than writing the (lengthy) analytical expressions for

them we give a numerical example for their dependence on

u in the inset of Fig. 3. The eigenstates are

jnðxÞi1
1ffiffiffi
S

p

c2eif þ c1En

1KE2
n

c1eKif þ c2En

0
BB@

1
CCA (10)

where S is the normalization. Note that for EZG1 we have

SZ2(c1Gc2)2, while for EZ0 we have Sz1. After some

algebra we find that the first component of the ~B field in the

FZ0 plane is

B1 ZK2Im
v

vu
nðxÞ

v

vf
nðxÞ






�
ZK c2

1 Kc2
2

� � 1

S2

vS

vu

�

which is illustrated in Fig. 3. For a pumping cycle around the

uzH1 vertical ‘chain’ the main contribution to Q comes

from crossing the uzH1 line. Hence we get

QZG
c1Gc2

c1Hc2

ZG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1G2gT

p
(11)

where the Thouless conductance in this context is defined as

gTZ2c1c2=ðc1Hc2Þ
2. In both cases we have approximate

quantization QZG1CO(gT) for gT/1, while for a tight

cycle either Q/N or Q/0 depending on which line of

degeneracies is being encircled. If the pumping cycle

encircles both ‘chains’ then we get QZ4c1c2= c
2
1Kc2

2

� �
. In
Fig. 3. The first component of the B field for a particle in the middle

level of the three site lattice model. It is plotted as a function of the

dot potential x2Zu. The other parameters are fZ0, and c1Z0.1,

while c2Z0.04 for the thick line and c2Z0.02 for the thin line. In

the limit c2/0, all the charge that is transferred from the left side

into the dot during the first avoided crossing, is emitted back into the

left side during the second avoided crossing. Inset: the eigenener-

gies En(x) for the c2Z0.04 calculation.
the latter case QZOðgT Þ for gT/1, with no indication for

quantization.

For a pumping in a dot-wire system (see illustration in

Fig. 1(b)), in the limit of a very long wire (many sites) we

express the Kubo formula for the conductance matrix using

the S matrix of the dot region. The derivation assumes

‘quantum chaos’, and leads to

G3j Z
1

2pi
trace P

vS

vxj
S†

� 	
(12)

This is easily identified as the Büttiker–Prétre–Thomas

formula [9], which has been derived for quantum pumping

in open systems (Fig. 1(e)). In particular, we get G33Z
ð1=ð2pZÞÞtraceðPSð1KPÞS†Þ which is just the Landauer

formula [13–15].

In summary, we have shown how the Kubo formalism

can be used in order to derive both classical and quantum

mechanical results for the pumped charge Q in a closed

system. In this formulation the distinction between dis-

sipative and non-dissipative contributions is manifest. For a

follow-up paper on this issue see Ref. [17]. The dissipative

contribution to the pumping can be neglected in the

adiabatic regime. However, if the adiabaticity condition is

violated it does not mean automatically that we have a

dissipative effect. Classical pumping by translation is an

obvious example. For the derivation of the dissipative part

of the Kubo formula it is essential to realize that in generic

circumstances (unlike the case of translations) the adiabatic

equation does not possess a stationary solution. For a follow

up paper on this issue see Ref. [18].
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