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Quantum pumping and dissipation: From closed to open systems

Doron Cohen
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Current can be pumped through a closed system by changing parameters~or fields! in time. The Kubo
formula allows one to distinguish between dissipative and nondissipative contributions to the current. We
obtain a Green function expression and anS-matrix formula for the associated terms in the generalized
conductance matrix: the ‘‘geometric magnetism’’ term that corresponds to adiabatic transport, and the ‘‘Fermi
golden rule’’ term which is responsible for the irreversible absorption of energy. We explain the subtle limit of
an infinite system, and demonstrate the consistency with the formulas by Landauer and Bu¨ttiker, Prétre and
Thomas. We also discuss the generalization of the fluctuation-dissipation relation, and the implications of the
Onsager reciprocity.
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Linear response theory~LRT! is the traditional theoretica
tool for dealing with the response of driven systems.1–4 It
offers an expression~the Kubo formula! for the generalized
susceptibility, and hence for the generalized conductance
trix. It has been realized that in the adiabatic limit the Ku
formula reduces to an expression for ‘‘geomet
magnetism.’’5 In case of electrical current calculation the la
ter gives the ‘‘adiabatic transport’’ of charge.6,7 Outside the
adiabatic regime the response includes an additional ‘‘di
pation’’ term.8 The latter determines the rate of irreversib
energy absorption, which is caused by Fermi golden r
transitions between energy levels.

Recently there has been much interest in analyzing
response ofopen systemsthat are connected to reservoir
The analysis has been based on theS-matrix formalism, lead-
ing to the Landauer formula,2,3 and more generally to the
Büttiker, Prétre, and Thomas~BPT! formula.9 A major moti-
vation for the present work is the realization that the relat
between the BPT formula and the Kubo formula has not b
clarified. In particular, the notion of ‘‘adiabatic pumping’’ i
the context of an open system has been left obscured,
some confusion has arose regarding the role of dissipatio
the pumping process.8,10,11

The purpose of the present work is to analyze the
sponse ofclosed isolated systems,11,12 and in particular to
consider the special limit of an infinite system~no reser-
voirs!!. Thus we are going to construct a bridge between
LRT formulation and the BPT formula. This is of great pra
tical importance, because the assumed open geometry o
S-matrix formulation is in many cases an idealization. It
clear that Kubo formula allows a straightforward incorpo
tion of finite-size, external noise, environmental, and pos
bly also many-body effects. A major step in constructing t
bridge, had been taken up in Ref. 13, where the authors
with the Kubo formula for the electrical conductivity and en
up with the Landauer formula which relates the conducta
to the transmission of the device. We are going to see tha
general case, which deals with thegeneralizedconductance
matrix and hence incorporates adiabatic transport, is m
more subtle.

Consider aclosed isolated systemwhose HamiltonianH
depends on several control parametersxj . An example is
0163-1829/2003/68~20!/201303~4!/$20.00 68 2013
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presented in Fig. 1, wherex1 and x2 are gate voltages an
x3 is the magnetic flux through the loop. The generaliz
forces are conventionally defined asFk52]H/]xk . Note
that F3 is the electrical current. In LRT1 the first-order con-
tribution to ^Fk& is related toxj (t) by a causal respons
kernel ak j(t2t8). The Kubo expression for this respons
kernel is ak j(t)5Q(t)Kk j(t), where Kk j(t)5( i /\)
3^@Fk(t),F j (0)#& andQ(t) is the step function. The Fou
rier transform of ak j(t) is the generalized susceptibilit
xk j(v). The generalized conductance matrix is

Gk j5 lim
v→0

Im@xk j~v!#

v
5E

0

`

Kk j~t!tdt. ~1!

Thus in the limit of zero frequency the nontrivial part of th
response can be written as a generalized Ohm’s law

^Fk&52(
j

Gk jẋ j[~2h• ẋ2B` ẋ!k , ~2!

where following Ref. 5 the generalized conductance ma
is written as a sum of a symmetric matrixhk j5hik that rep-
resents the dissipative response, and an antisymmetric m
Bk j52Bjk that represents the nondissipative response~also
called geometric magnetism!.

FIG. 1. Illustration of a closed system. The dot potential is co
trolled by gate voltagesx1 and x2. The flux through the loop is
x35F. The scattering region (r ,0) is represented by anSmatrix.
The lengthL of the wire is assumed to be very large.
©2003 The American Physical Society03-1
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For a device as in Fig. 1, and zero-temperature occupa
of noninteracting~spinless! fermions, we find below that the
dissipative part of the response is

hk j5
\

p
tr†FkIm@G1#F j Im@G1#‡ ~3!

5
\

4p
trF]S†

]xi

]S

]xj
G , ~4!

whereG651/(E2H6 i0) are Green functions of the corre
sponding open system, and Im@G1#52 i (1/2)(G12G2).
For the nondissipative part of the response we find

Bk j52
i\

2p
tr†Fk~G11G2!F j Im@G1#‡ ~5!

5
e

4p i
trFPAS ]S

]xj
S†2

]S†

]xj
SD G1Bintrf

3 j , ~6!

where the second equality holds fork53, and allows the
determination of the electrical current^F3& via a specified
lead A. The last term is defined in Eq.~26!. The projectorPA
restricts the trace operation to be over the specified l
channels. In the absence of magnetic field the remain
component isB1250, while h315h3250 as expected from
the Onsager reciprocity relations~see last paragraph!. Disre-
garding the last term in Eq.~6!, the sum of Eqs.~6! and ~4!
for k53 coincides with the BPT formula, which can be wr
ten in our notations as

G3 j5
e

2p i
trS PA

]S

]xj
S†D @BPT#. ~7!

We show later that this reduces forj 53 to the Landauer
formula which relates the electrical conductanceG33 to the
transmission of the device.

Below we explain how to derive the expressions forhk j

and Bk j starting from the Kubo formula Eq.~1!. Later we
discuss further physical implications of our results. Assu
ing zero-temperature Fermi occupation up to energyEF ,
standard textbook procedure1–4 leads to

hk juG5p\(
n,m

Fnm
k d~EF2Em!Fmn

j d~EF2En!, ~8!

where the overline indicates that thed functions are smeared
If the system were not isolated, the ‘‘broadening’’G of the
energy levels would be determined by the interaction w
the external environment.4 But we assume a closedisolated
system. Still we argue8 that in case of a quantizedchaotic
system the levels acquire an effective widthG
5„(\sF /D2)uẋu…2/3D, whereD is the mean level spacing
and sF is the root-mean-square value of the near-diago
matrix elements~see remark14!. Therefore we find two pos
sibilities: In the adiabatic regime (G!D) the dissipative con-
ductance is zero (h50), while in the nonadiabatic regim
(G.D) the dissipative conductance acquires a well-defin
finite value, which isnot sensitive toG, and can be calcu
20130
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lated using Eq.~3!. A similar claim holds regardingBk j, but
the details are much more subtle. We start with the stand
expression5,11

Bk juG5052\(
n

f ~En! (
m(Þn)

Im@Fnm
k Fmn

j #

~Em2En!2
, ~9!

where f (E) is the Fermi occupation function~later we take
the limit of zero temperature!. IncorporatingG, and exploit-
ing the antisymmetry of the numerator with respect ton⇔m
interchange we get

Bk juG5(
n,m

2 i\Fnm
k Fmn

j

~Em2En!21~G/2!2
„f ~En!2 f ~Em!…. ~10!

The numerator, on an average, depends mainly on the di
encer 5m2n, and it is nonnegligible within a bandwidth
uEm2Enu,Db . We further discuss the bandwidth issue
the next paragraph, and explain that in the limit of a ve
long wireD!G!Db . This means that in this limitG serves
like the infinitesimali0 in the definition of the Green func
tionsG6. Consequently, the sum in Eq.~10!, which is of the
form (n,mg(n2m)„f (En)2 f (Em)…5( r rg(r ), leads after
some straightforward algebra to Eq.~5!.

Formally there is an optional derivation that leads
Eqs. ~3! and ~5!. The kernel Ki j (t) is related to the

symmetrized correlation functionCi j (t)5^ 1
2 @Fi(t)F j (0)

1F j (0)Fi(t)#&. The quantum-mechanical derivation of th
subtle relation is discussed in Appendix D of Ref. 11. If w
use this relation we get from Eq.~1! an extremely simple
~and useful! result

Gk j5
1

DE0

`

Ck j~t!dt, ~11!

which can be regarded as the generalization of thefluctuation
dissipation relation. The fluctuations are described b
C̃k j(v) which is defined as the Fourier transform ofCi j (t).
It follows from this definition that

C̃k j~v!5
2p\

D
F nm

k F mn
j U

En2Em'\v

. ~12!

For the device of Fig. 1 the mean level spacing isD}1/L,
whereL is the length of the wire. The above relation implie
that the bandwidth of themn matrix isDb;\/tcl , where the
classical correlation timetcl is determined by the chaoti
motion inside the dot. It is also clear thatC̃i j (v)}1/L, and
thereforesF

2}(1/L)2. Hence we get thatG}(1/L)1/3, imply-
ing that the limitL→` ~keeping constant Fermi energy! is
nonadiabatic, and thatD!G!Db . Assuming for simplicity
that there is no magnetic field, one easily derives the exp
sions

G335
1

2D
C̃33~v;0!, ~13!
3-2
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G3 j5
1

DE2`

`

IF C̃3 j~v!

v
Gdv

2p
for j 51,2, ~14!

which are equivalent to those obtained in the preceding p
graph. Note thatC3 j (t) with j 51,2 is antisymmetric with
respect tot, and therefore2 iC̃3 j (v)/v is a real symmetric
function.

We turn back to the formal derivation. We want to g
exact expressions for the elements of the conductance
trix, for the device of Fig. 1, in the nonadiabatic limit o
large L. The location of the particle is specified byr
5(r,s), wherer is the coordinate along the ring ands is a
transverse coordinate. Optionally we can specify the loca
along a lead using a radial coordinater, while the surface
coordinates distinguishes different points that have the sa
r. We shall refer tor 50 as the boundary of the scatterin
region. The channel basis is defined as^r,sua,r &5xa(s)d„r
2ra(r )…, wherea is the channel index. The wave function
the lead regions can be expanded as follows:

uC&5(
a,r

~Ca,1eikar1Ca,2e2 ikar !ua,r &. ~15!

Following3 we define an operator which can be identifi
with the imaginary part of the self-energy of the interacti
of the dot with the leads

Ĝ5(
a

ua,0&\va^a,0u5d~r ! ^ (
a

ua&\va^au, ~16!

whereva5(\ka /mass) is the velocity in channela. The ma-
trix elements of the second term in Eq.~16! are

Ĝ~s,s8!5(
a

xa~s!\vaxa~s8!. ~17!

Using standard procedure@see Sec.~3.4! of Ref. 3# the Green
function in the leads, inside the scattering region (r ,0), can
be expressed using theS matrix

G1~r ,su0,s8!52 i(
a,b

xb~s!
1

A\vb

3~e2 ikr1Seikr !ba

1

A\va

xa~s8!, ~18!

wherek5diag$ka% is a diagonal matrix. Now we are fully
equipped to convert Eq.~3! into anS-matrix expression. Us-
ing the identities@for Eq. ~19! below see Ref. 3#

Im@G1#52 1
2 G1ĜG252 1

2 G2ĜG1, ~19!

]G6

]xj
52G6F jG6, ~20!

we obtain

hk j5
\

4p
trF]G1

]xj
Ĝ

]G2

]xj
Ĝ G . ~21!
20130
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Using the definition ofĜ and Eq.~18! we get Eq.~4!.
The derivation of theS-matrix expression Eq.~6! for Bk j

is much more subtle, and requires a preliminary discuss
of the definition of the current operator. Consider a ring g
ometry, and assume that the current is driven by the fluxF.
In order to have a better defined model we should spe
what is the vector potentialA(r) along the ring. We can
regard the values ofA at different points in space as inde
pendent parameters~think of tight binding model!. Their sum
@meaningrA(r)•dr] should beF. So we have to know how
F is distributed along the ring. This is not just a matter
‘‘gauge choice’’ because the electric fieldE(r)52Ȧ(r) is a
gauge invariant quantity. The transformationA°A
1“L(r) for a time dependent field is not merely a gau
change. A gauge transformation of time dependent field
quires a compensating replacement of the scalar poten
which is not the case here. So let us define a fluxFA which
is associated with a vector potential that is concentra
across a sectionr5rA of a given lead. For the later derivatio
it is essential to assume that the sectionr5rA is contained
within the scattering region~see Fig. 1!. The generalized
force which is associated withFA is F35I A , the current
through this section. Namely,

I A52
]H
]FA

5 1
2 e„vd~r2rA!1d~r2rA!v… ~22!

5~e/\!@ĜAP12ĜAP2#, ~23!

wherev is ther component of the velocity operator. The la
equality involves new definitions. We define

ĜA5 (
aPA

ua,r A&\va^a,r Au. ~24!

We also define projectorsP1 andP2 that project out of the
lead wave function, Eq.~15!, the outgoing and the ingoing
parts, respectively. These projectors commute withĜA . Fur-
thermore, note thatP1G15G1, P2G150, and G2P2

50, and so forth. Using these extra identities one obtains
following expression:

B3 j5
e

4p i
trF ĜA

]G1

]xj
ĜG22ĜA

]G2

]xj
ĜG1G . ~25!

Using the definitions ofĜ and ĜA , together with Eq.~18!,
followed by a straightforward algebraic manipulation, o
arrives at Eq.~6! with the additional term

Bintrf
3 j 5

e

2p
ReF trS PA

]S

]xj
ei2krAD G , ~26!

wherePA is a projector that restrict the trace operation to t
aPA lead channels.

For the simple ring geometry of Fig. 1, we have a left le
(bPB) and a right lead (aPA) channels, and theS matrix
can be written as
3-3
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S5S rB tABe2 if

tBAeif rA
D , PA5S 0 0

0 1D , ~27!

wheref5eFA /\. Using the identity

]S

]FA
5 i

e

\
~PAS2SPA! ~28!

one can derive the relation that has been stated between
~4!, Eq. ~6!, and the BPT formula Eq.~7!. Furthermore, as-
suming that there is an electro motive force2ḞB which is
induced in the other lead, one obtains from BPTG33

5(e2/2p\)tr(tABtAB
† ) which is the Landauer formula. Th

application of this procedure to multilead systems is
straightforward generalization.

For anopensystem it is evident that the current which
emitted~say! through the right lead does not have to be eq
to the current which is absorbed by the left lead. The rea
is that charge can be accumulated in the dot region. But f
pumping cycle one realizes that the integrated curr
~pumped charge! is a well defined~lead independent! quan-
tity. Similar observation holds in case of aclosedsystem.
Assume for example, that the left lead is blocked. In su
case raising the dot potential will cause an emission
charge through the right lead, while the current through
left lead is zero. The emitted charge is accumulated in
‘‘wire.’’ But for a full cycle the original charge distribution is
restored, and therefore the integrated chargeQ becomes a
well-defined ~lead independent! quantity. The additional
term, Eq.~26!, gives a zero net contribution for a full pump
ing cycle. This term implies that the current is not unifor
within the lead. The current has a modulation in the rad
directionr, with a spatial period that equals half the de Br
glie wavelength at the Fermi energy. This reflects that the
transported current corresponds to translation of a stan
wave which is associated with the last occupied level.

More subtle is the value ofQ for a full driving cycle. In
contrast to a previous wrong statement10 we have argued11

that for a strictly adiabatic driving cycle, in the absence
magnetic field, the transported chargeQ is at bestapproxi-
mately quantized ~say Q'1 in units of the elementary
charge!. The deviation is related to the Thouless conducta
20130
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of the device, and can be either positive or negative11

In contrast to that, with the BPT formula the correction
Q'1 is always negative. On the basis of our derivation
can conclude the following: The deviation from quantizati
in a strictly adiabatic cycle is related to the contribution
the neighboring level. If the degeneracy with this level
located in the plane (x1 ,x2 ,x350) of the encircling cycle,
then the correction is positive. If the encircled degenerac
off plane, then the correction is negative. The effect of no
diabaticity (G.D) is to screen the contribution of the neigh
boring levels, which is the reason for having always a ne
tive correction from the BPT formula.

The role that dissipation may have in pumping is r
stricted, merely by the realization that the BPT formula
related to the Kubo formula. The Onsager reciprocity re
tion imply that in the absence of magnetic field the cond
tance matrixGk j should be symmetric~antisymmetric! with
respect to the permutation of the indexes (k, j ), depending
on whetherFk andF j transform~not! in the same way unde
time reversal. This means that shape deformations lea
dissipation viahi j with i , j ,3, while the electrical current is
determined exclusively by the nondissipative termsB31 and
B32. This should be contrasted with the response to elec
motive force which is purely dissipative. Both the curre
and the dissipation are exclusively determined by the Oh
conductanceh33. Thus, in the absence of magnetic field, w
have a clear cut distinction between the dissipative and
nondissipative contributions to the response.

In summary, starting with the Kubo formalism, we we
able to find expressions for the dissipative and for the n
dissipative parts of the response, and to illuminate the role
nonadiabaticity in the limiting case of aninfinite system. In
contradiction with past speculations, we were able to de
onstrate that the switch to anopensystem does not necess
tate an extra dissipative term.
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