
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 10151–10158 PII: S0305-4470(03)63750-9

Non-perturbative response: chaos versus disorder

Doron Cohen1 and Tsampikos Kottos2

1 Department of Physics, Ben-Gurion University, Beer-Sheva 84105, Israel
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Abstract
Quantized chaotic systems are generically characterized by two energy scales:
the mean level spacing �, and the bandwidth �b ∝ h̄. This implies that with
respect to driving such systems have an adiabatic, a perturbative and a non-
perturbative regimes. A ‘strong’ nonlinearity in the response, due to a quantal
non-perturbative effect, is found for disordered systems that are described by
random matrix theory models. Is there a similar effect for quantized chaotic
systems? Theoretical arguments cannot exclude the existence of an analogous
‘weak’ version of the above-mentioned nonlinear response effect, but our
numerics demonstrates an unexpected degree of semiclassical correspondence.

PACS number: 05.45.Mt

1. Introduction

1.1. The two energy scales in quantum chaos

The name ‘quantum mechanics’ is associated with the idea that the energy is quantized. For
generic (chaotic) system the mean level spacing is � ∝ h̄d , where d is the dimensionality of
the system. However, one should recognize that there is a second energy scale �b ∝ h̄ which
is introduced by quantum mechanics. This h̄ energy scale is related to the chaos implied decay
of the classical correlations. It is known in the literature as the ‘non-universal’ energy scale
[1], or as the ‘bandwidth’ [2]. The dimensionless bandwidth is defined as b = �b/�. For
reasonably small h̄ one has b � 1.

This observation, of having two energy scales, has motivated the study of Wigner model
[3] within the framework of random matrix theory (RMT). This model, which is defined in
terms of � and �b, is totally artificial: it does not possess any classical limit. Still note that
it can be reinterpreted as a model for the motion of a particle in a quasi one-dimensional
disordered lattice [4].

The main focus of quantum chaos studies (so far) was on issues of spectral statistics [5]. In
that context it turns out that the sub-h̄ statistical features of the energy spectrum are ‘universal’,
and obey the predictions of random matrix theory. Non-universal (system specific) features
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are reflected only in the large scale properties of the spectrum (analysing energy intervals
>�b).

1.2. Regimes in the theory of driven systems

In recent years we have made some progress in understanding the theory of driven quantized
chaotic systems [6–9]. Driven systems are described by Hamiltonian H(Q, P, x(t)), where
x(t) is a time-dependent parameter. Such systems are of interest in mesoscopic physics
(quantum dots), as well as in nuclear, atomic and molecular physics. The time-dependent
parameter x(t) may have the significance of external electric field or magnetic flux or gate
voltage. Linear driving x(t) = V t is characterized by one parameter (V ), while more generally
a periodic driving x(t) = Af (t) is characterized by both amplitude (A) and frequency
(�). Due to the time dependence of x(t), the energy of the system is not a constant of
motion. Rather the system makes ‘transitions’ between energy levels, and therefore absorbs
energy.

The main object of our studies is the energy spreading kernel Pt(n|m). Regarded as
a function of the level index n, it gives the energy distribution after time t, where m is the
initial level. Having two quantal energy scales (�, �b) implies the existence of different
quantum mechanical (QM) V regimes [6, 7], or more generally (A,�) regimes [8], in the
theory of Pt(n|m). Most familiar is the QM adiabatic regime (very small V ), whose existence
is associated with having finite �. Outside of the adiabatic regime we are used to the idea that
there is a perturbative regime, where the Fermi golden rule applies, leading to a Markovian
picture of the dynamics, with well-defined transition rates between levels. Less familiar [6–8]
is the QM non-perturbative regime (V is quantum mechanically large, but still classically
small) whose existence is associated with the energy scale �b. As implied by the terminology,
in the QM non-perturbative regime perturbation theory (to any order) is not a valid tool for the
analysis of the energy spreading. Consequently, the Fermi golden rule picture of the dynamics
does not apply there.

1.3. Linear response theory

Of special importance (see the discussion below) is the theory for the variance δE(t)2 =∑
n Pt (n|m)(En − Em)2 of the energy spreading. Having δE(t) ∝ A means linear response.

If δE(t)/A depends on A we call it ‘nonlinear response’. In this paragraph we explain that
linear response theory (LRT) is based on the ‘LRT formula’

δE(t)2 = A2 ×
∫ ∞

−∞

dω

2π
F̃ t (ω)C̃(ω). (1)

Two spectral functions are involved: one is the power spectrum C̃(ω) of the fluctuations, and
the other F̃ t (ω) is the spectral content of the driving. See equations (4) and (5) for exact
definitions. A special case of equation (1) is the sudden limit (V = ∞) for which f (t) is a
step function, hence Ft(ω) = 1, and accordingly

δE =
√

C(0) × A (‘sudden’ case). (2)

Another special case is the response for persistent (either linear or periodic) driving. In such
case the long time limit of Ft(ω) is linear in time (e.g. for linear driving (f (t) = t) we get
Ft(ω) = t × 2πδ(ω)). This implies diffusive behaviour:

δE(t) =
√

2DEt (‘Kubo’ case). (3)
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In the latter case the expression for DE ∝ A2 is known as Kubo (or Kubo–Greenwood)
formula, leading to a fluctuation–dissipation relation [9].

The LRT formula equation (1) has a simple classical derivation3. From now on it goes
without saying that we assume that the classical conditions on (A,�) for the validity of
equation (1) are satisfied (no h̄ involved in such conditions). The question is what happens to
the validity of LRT once we ‘quantize’ the system. Can we trust equation (1) for any (A,�)?
Or maybe we can trust it only in a restricted regime? In previous publications [6–9], we were
able to argue the following:

(A) The LRT formula can be trusted in the perturbative regime, with the exclusion of the
adiabatic regime.

(B) In the sudden limit the LRT formula can be trusted also in the non-perturbative regime.
(C) In general, the LRT formula cannot be trusted in the non-perturbative regime.
(D) The LRT formula can be trusted deep in the non-perturbative regime, provided the system

has a classical limit.

For a system that does not have a classical limit (Wigner model) we were able to demonstrate
[8] that LRT fails in the non-perturbative regime. Namely, for Wigner model the response
δE(t)/A becomes A dependent for large A, meaning that the response is nonlinear. Hence the
statement in item (C) above has been established. We had argued that the observed nonlinear
response is the result of a quantal non-perturbative effect. Do we have a similar type of
nonlinear response in the case of quantized chaotic systems? The statement in item (D) above
seems to suggest that the observation of such nonlinearity is not likely. Still, we argue below
that this does not exclude the possibility of observing a ‘weak’ nonlinearity.

2. Perturbation theory and linear response

The immediate (naive) tendency is to regard LRT as the outcome of first-order perturbation
theory (FOPT). In fact the regimes of validity of FOPT and of LRT do not coincide. On the
one hand we have the adiabatic regime where FOPT is valid as a leading order description,
but not for response calculation (see further details below). On the other hand, the validity of
equation (1) goes well beyond FOPT. This leads to the (correct) identification [6–8] of what
we call the ‘perturbative regime’. The border of this regime (in (A,�) space) is determined
by the energy scale �b, while � is not involved. Outside of the perturbative regime we cannot
trust the LRT formula. However, as we further explain below, the fact that equation (1) is not
valid in the non-perturbative regime, does not imply that it fails there.

We stress again that one should distinguish between ‘non-perturbative response’ and
‘nonlinear response’. These are not synonyms. As we explain in the next paragraph,
the adiabatic regime is ‘perturbative’ but ‘nonlinear’, while the semiclassical limit is ‘non-
perturbative’ but ‘linear’.

In the adiabatic regime, FOPT implies zero probability to make a transition to other levels.
Therefore, to the extent that we can trust the adiabatic approximation, all the probability
remains concentrated in the initial level. Thus, in the adiabatic regime, equation (1) is not a
valid formula: it is essential to use higher orders of perturbation theory, and possibly non-
perturbative corrections (Landau–Zener [10]), in order to calculate the response. Still, FOPT
provides a meaningful leading order description of the dynamics (i.e. having no transitions),
and therefore we do not regard the adiabatic nonlinear regime as ‘non-perturbative’.

3 For an elementary classical and quantum mechanical derivations of equation (1), using either fixed or adiabatic
basis see Appendices C and D of [7].
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In the non-perturbative regime the evolution of Pt(n|m) cannot be extracted from
perturbation theory: not in leading order, neither in any order. Still it does not necessarily
imply a nonlinear response. In contrast, the semiclassical limit is contained in the (deep) non-
perturbative regime [8]. There, the LRT formula equation (1) is in fact valid. But its validity
is not a consequence of perturbation theory, but rather the consequence of quantal-classical
correspondence.

3. The quest for non-perturbative response

As stated above, an effect of nonlinear response due to the quantum mechanical non-
perturbative nature of the dynamics, has been demonstrated so far only for Wigner model [8].
There, its existence is related to the disordered RMT nature of the model (see the discussion
below). Semiclassical correspondence considerations seem to exclude the manifestation of
this disorder-related nonlinearity in the case of quantized chaotic systems. In this paper, we
explain that this does not exclude the possibility of having a ‘weak’ version of this effect. We
also report the results of an intense numerical effort aimed at finding a ‘weak’ nonlinearity
in the case of a simple low-dimensional quantized chaotic systems. To our surprise, an
unexpected degree of semiclassical correspondence is observed.

It is appropriate here to clarify the notions of ‘weak’ and ‘strong’ effects. In the literature
regarding the dynamics in disordered lattices one distinguishes between ‘weak’ and ‘strong’
localization effects. The former term implies that while the leading behaviour is classical
(diffusion), there are ‘on top’ quantum mechanical corrections (enhanced return probability).
In contrast to that the term ‘strong’ implies that the classical description fails even as a
leading order description. In the literature regarding quantum chaos we have the effect of
‘scarring’, which should be regarded as ‘weak’ effect. ‘Strong’ quantum mechanical effects
(e.g. dynamical localization in 1D kicked systems [13]) are non-generic: the leading order
behaviour of generic quantized chaotic systems is typically classical. In the present context
of driven systems, we use the terms ‘weak’ and ‘strong’ in the same sense: the adjective
‘weak’ is associated with the (conjectured) nonlinear response of quantized driven chaotic
systems, while the adjective ‘strong’ is associated with the (established) nonlinear response in
the corresponding RMT (Wigner) model.

4. The numerical findings

How do we detect nonlinear response? The most straightforward way is to fix the pulse
shape f (t) and to plot δE/A versus A. A deviation from constant value means ‘nonlinear’
response. The simulations below are performed for a quantized chaotic system. Due to
obvious numerical limitations we will consider the response to one-pulse driving, rather than
to persistent (periodic) driving. The central question is whether the observed nonlinear effect
is of semiclassical origin, or of novel quantum mechanical origin. We deal with this issue
below.

In our numerical simulations (figure 1) we have considered a particle in a two-dimensional
(d = 2) anharmonic well. This model (with deformation parameter x = const) is defined
in [11, 12]. In the energy region of interest (E ∼ 3), the classical motion inside the
two-dimensional well (2DW) is chaotic, with characteristic correlation time τcl ∼ 1. For
the following presentation it is enough to say that the quantum mechanical Hamiltonian is
represented by a matrix H = E + x(t)B, where E is a diagonal matrix with mean level spacing
� ≈ 4.3 × h̄d , and B is a banded matrix. The bandwidth (in energy units) is �b = 2πh̄/τcl .
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Figure 1. The response δE/A as a result of a rectangular pulse (T = 0.375). Deviation from
δE/A = const implies nonlinear response. All the data are averaged over a number of different
initial conditions. The simulations are performed with the 2DW Hamiltonian (circles), and also
with the associated RMT model (stars). See text for explanations.
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Figure 2. Scaled versions of figure 1. The vertical scaling is aimed at removing the weak h̄

dependence of the bandprofile. In (b) the horizontal scaling is aimed at checking whether the
deviation from linear response is in fact a quantal non-perturbative effect.

The bandprofile (see figure 2 of [10]) is described by a spectral function which is defined as
follows:

C̃(ω) =
∑

n(�=m)

|Bnm|2 2πδ

(
ω − En − Em

h̄

)
(4)

with implicit average over the reference state m. The bandprofile, as defined above, can be
determined from the classical dynamics. This means that C̃(ω) ≈ C̃cl(ω) where C̃cl(ω) is
the Fourier transform of a classical correlation function Ccl(τ ). The h̄ dependence of C̃(ω) is
relatively weak.

The driving pulse in our numerical simulations has a rectangular shape. This means
f (0) = f (T ) = 0 and f (0 < t < T ) = A, where T = 0.375. The spectral content of the
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driving is defined as

F̃ t (ω) =
∣∣∣∣
∫ t

0
ḟ (t ′) eiωt ′ dt ′

∣∣∣∣
2

. (5)

The spectral content of the driving after a rectangular pulse is Ft(ω) = |1 − eiωT |2. We have
also made simulations (not presented) with a driving scheme that involves a positive pulse
+A followed by a negative pulse −A, with the intention of considering eventually a persistent
(multi-cycle) periodic driving. However, we have realized that all the relevant physics is
observed already in the single pulse case. Note that the regime diagram for either linear or
(as in the following simulations) rectangular driving pulse, is greatly simplified, because the
driving is characterized by only one parameter (V in the former case, A in the latter case).

Let us look carefully at the results of the 2DW simulations (figure 1). For small A we see
as expected ‘linear response’ meaning δE/A = const, as implied by equation (1). Note that
the ‘constant’ has a weak h̄ dependence (a 10% effect). This is due to the above-mentioned
weak dependence of C̃(ω) on h̄. So this quantum mechanical effect is quite trivial, and has a
simple explanation within LRT. Now let us look what happens for large A. We clearly see a
2% deviation from linear response. In what follows we discuss the reason for this nonlinear
effect.

For the sake of comparison we also perform simulations with an effective RMT model
that corresponds to the 2DW model Hamiltonian. The effective RMT model is obtained by
randomizing the signs of the off-diagonal elements of the B matrix. The effective RMT
Hamiltonian has the same bandprofile C̃(ω) as the original (2DW) Hamiltonian. Therefore,
as far as LRT equation (1) is concerned, the response should be the same. Still we see that
at the same A regime, as in the case of the 2DW simulations, we have deviation from linear
response. However, this nonlinear deviation is much stronger.

Looking at the curves of figure 1, it is very tempting to regard the observed nonlinear 2%
effect in the 2DW simulations as a ‘weak’ version of the ‘strong’ effect which is observed
in the corresponding RMT simulations. However, the careful analysis below indicates that
apparently this is not the case.

5. Discussion and analysis

In analysing the validity of the LRT formula, it is instructive to consider first the sudden
limit equation (1). This limit has been studied in [11]. The spreading profile P(n|m),
after the sudden change in x, depends on the amplitude A of the perturbation. (We omit
the time index t, which is of no relevance in this limit.) The perturbative regime is
A < Aprt, where Aprt = 2πh̄/(τcl

√
C(0)). For the 2DW simulations Aprt = 5.3 × h̄. In the

perturbative regime P(n|m) has a core-tail structure (the generalization of Wigner Lorentzian),
and the variance δE2 is determined by the first-order tail component of the energy distribution.
For A > Aprt the spreading profile P(n|m) becomes non-perturbative. This means that the
perturbative tail (if survives) is no longer the predominant feature. Thus the variance is
determined by the non-perturbative component (the ‘core’) of the energy distribution. The
remarkable fact is that the crossover from the perturbative A regime to the non-perturbative
A regime is not reflected in the variance (see figure 5 of [11]). The agreement with equation
(2) is perfect. Taking into account the ‘dramatic’ differences in the appearance of P(n|m),
this looks quite surprising. In fact (see section 12 of [11]) there is a simple proof4 that
equation (2) remains exact beyond any order of perturbation theory, which means that it is
exact even in the non-perturbative regime where perturbation theory is not applicable.
4 We thank F M Izrailev for pointing out the existence of this proof in [3].
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We turn back to our simulations, where we have a rectangular pulse (rather than step
function). Here the sudden limit does not apply, and the dynamics within the time interval
0 < t < T should be taken into account. If we take an eigenstate of E and propagate it
using E + AB, then we get in the classical case ballistic spreading followed by saturation.
(‘Eigenstate’ in the classical case means microcanonical distribution.) This is true for any
A. Quantum mechanically we observe in the 2DW model simulations a similar ballistic
behaviour [12], whereas in the corresponding RMT model there is an intermediate stage of
diffusion [12]. This diffusion is of non-perturbative nature, and it is related to the ‘disorder’
which is artificially introduced via the sign-randomization procedure. The strong nonlinear
response effect [8] is a consequence of this diffusion.

Coming back to the 2DW model, we realize that there is no ‘disorder’ built into the model,
and therefore no diffusion. Still, looking at figure 1, it is tempting to interpret the observed
2% nonlinear deviation as a ‘weak’ version of the strong nonlinear effect. Moreover, regarded
as such, it vanishes, as expected, in the deep non-perturbative regime, which had been argued
on the basis of semiclassical correspondence considerations [8].

In order to properly determine whether the dips in figure 1 are the result of the QM
non-perturbative nature of the dynamics, we have rescaled the vertical axis, and plotted the
response once (figure 2(a)) versus A, and once (figure 2(b)) versus A/h̄. On the basis of
the scaling we see that the strong nonlinear response in the RMT case is indeed the result of
the quantal (h̄-dependent) non-perturbative effect. In contrast to that the h̄-independent scaling
in the 2DW case, indicates that the nonlinear deviation there is of ‘semiclassical’ rather than
of ‘quantal non-perturbative’ nature.

6. Conclusion

In conclusion, theoretical arguments cannot exclude the existence of a ‘weak’ nonlinearity
in the response of a driven quantized chaotic system, which is due to a quantum mechanical
non-perturbative effect. But our careful numerics, regarding a simple low-dimensional system,
demonstrates an unexpected degree of semiclassical correspondence. Our findings should be
regarded as the outcome of an ongoing quest, which has not ended, and that aims to find novel
quantum mechanical deviations from linear response theory.
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