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We consider chaotic billiards in d dimensions, and study the matrix elements Mnm corresponding to
general deformations of the boundary. We analyze the dependence of jMnmj

2 on v � �En 2 Em��h̄
using semiclassical considerations. This relates to an estimate of the energy dissipation rate when the
deformation is periodic at frequency v. We show that, for dilations and translations of the boundary,
jMnmj

2 vanishes like v4 as v ! 0, for rotations such as v2, whereas for generic deformations it goes
to a constant. Such special cases lead to quasiorthogonality of the eigenstates on the boundary.

PACS numbers: 05.45.Mt, 03.65.Sq
Chaotic cavities (billiards) in d dimensions are pro-
totype systems for the study of classical chaos and its
fingerprints on the properties of the quantum-mechanical
eigenstates. As the properties of static billiards are be-
ginning to be understood, questions naturally arise about
deformations and their time dependence. It is perhaps
not widely appreciated that certain deformations are very
special, and that there is a close connection between the
quantum and classical mechanics of such deformations in
the case of ergodic systems. In this paper, which takes a
fresh approach to these issues, we explore a special class
of deformations which do not “heat” in the limit of small
frequencies. We also establish a rather surprising relation-
ship to a very successful numerical technique for finding
billiard eigenfunctions.

We start with the one-particle Hamiltonian H0�r, p� �
p2�2m 1 V �r�, where m is the particle mass, r is the posi-
tion of the particle inside the cavity, and p is the conjugate
momentum. We will take the limit V �r� ! ` outside the
cavity, zero otherwise, corresponding to Dirichlet bound-
ary conditions. In this limit, the Hamiltonian is completely
defined by the boundary shape. We call the volume of the
cavity V � Ld . Upon quantization a second length scale
lB � 2p�k appears, where k is the wave number. For
simple geometries the typical time between collisions with
the walls is tcol � L�y, where y is the particle speed. The
energy is E � 1

2my2. Upon quantization the eigenener-
gies are En � �h̄kn�2�2m.

A powerful tool for the classical analysis is known as
the “Poincaré section.” Rather than following trajectories
in the full �r, p� phase space, it is much more efficient to
record only successive collisions with the boundary. This
way we can deal with a canonical transformation (map)
which is defined on a 2�d 2 1�-dimensional phase space.
A similar idea is used in quantum mechanics: By using
Green’s theorem, it is clear that all of the information about
an eigenstate c�r� is contained in the boundary normal
derivative function w�s� � n ? =c , where s is a �d 2 1�-
dimensional coordinate on the boundary, and n�s� is the
outward unit normal vector.
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However, unlike the classical case, the reduction to the
boundary is not satisfactory. One cannot define an associ-
ated Hilbert space that consists of the boundary functions.
In particular, the orthogonality relation �cn jcm� � dnm

does not have an exact analog on the boundary. Still, the
boundary functions “live” in an effective Hilbert space of
dimension ��L�lB�d21, and it has been realized [1] that
the following quasiorthogonality relation holds. Define an
inner product

Mnm �
1

2k2

I
wn�s�wm�s� �n ? D̂� ds , (1)

where D�s� � r�s� is the displacement field corresponding
to dilation (about an arbitrary origin), and kn � km � k
[2]. It is well known that the normalization condition
�cn jcn� � 1 implies Mnn � 1. We give a proof of this
exact result in the Appendix. On the other hand, the off-
diagonal elements are only approximately zero [3].

The main purpose of this Letter is to study the band
profile of the matrix Mnm for a general displacement field
D�s�. In particular we want to understand why, for special
choices of D�s� (notably dilations), we have quasiorthogo-
nality. Later we will explain that Mnm can be interpreted as
the matrix element of a perturbation dH associated with
a deformation of the boundary, such that �n ? D�dx is the
normal displacement of a wall element, given a control pa-
rameter dx. In the following two paragraphs we explain
the main motivations for our study.

The matrix elements jMnmj
2 determine the rate of irre-

versible energy absorption by the particle (i.e., dissipation)
due to external driving. Here “external driving” means
time-dependent deformation of the boundary. Having ex-
ceptionally small jMnmj

2 for special choices of D�s�, such
as dilations, translations, and rotations, implies an excep-
tionally small dissipation rate (“nonheating” effect). This
observation goes against the naive kinetic picture that the
rate of heating should not depend on how we “shake” the
boundary. The special nature of translations and rotations
for v � 0 has been recognized in the context of nuclear
© 2000 The American Physical Society



VOLUME 85, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 14 AUGUST 2000
dissipation [4,5]. Our present approach allows us to ana-
lyze the nonheating effect present for dilations as well, and
provide the form of the low-frequency response of the sys-
tem in all three cases (dilations, translations, and rotations).

There is another good motivation to study this issue. Re-
cently, a powerful technique for finding clusters of billiard
eigenstates and eigenenergies has been found by Vergini
and Saraceno [1,6], with a speed typically �103 greater
than previous methods. This efficiency relies on the above
quasiorthogonality relation, the associated numerical error
being given by the deviation of Mnm from dnm. The au-
thors tried to establish quasiorthogonality using the iden-
tity Mnm � dnm 1 	�k2

m 2 k2
n��2k2
Bnm, with Bnm �

�cnjr ? =jcm�, and by assuming [7] that jBnmj � O�1�.
However, a naive random-wave argument would predict
jBnmj � O�L�lB��d21��2.

Figure 2 (below) displays the band profile jMnmj
2 for

three choices of the displacement field D�s�. The band pro-
file can be regarded as a function of either k � kn 2 km

or, equivalently, v � �En 2 Em��h̄, related via v � yk.
The three band profiles differ in their peak structure, and
also in their v ! 0 limits: notably for dilations jMnmj

2

vanishes in this limit. Our aim is to understand the overall
v dependence, and the small v behavior in particular. For
the calculation of band profile we used all 451 eigenstates
of the 2D quarter stadium (see Fig. 1) lying between 398 ,

k , 402, found by using the method of Vergini and Sara-
ceno [1]. For this particular chaotic shape a remarkably
good basis set (size of order L�lB) of real and evanescent
plane waves has been devised [6], which allows the tension
error (defined as the boundary integral of c2) to be typi-
cally 3 3 10211 in our calculation, (maximum 2 3 10210

for any state). The resulting errors in w manifest them-
selves only when jMnmj

2 reaches its lowest reliable value
�10210, visible as bottoming out in the leftmost point of
the inset of Fig. 2.

In order to understand the quantum-mechanical band
profile, we can first assume that the eigenstates look like
uncorrelated random waves. A lengthy but straightforward
calculation [8] leads to the result

jMnmj
2 �

2�j cos�u�j3�
Vd

l
d21
B

V2

I
�n ? D�2 ds , (2)

where the geometric factors for d � 2, 3, . . . are Vd �
2p, 4p , . . . and �j cos�u�j3� � 4��3p�, 1�4, . . . . If the dis-
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FIG. 1. The two-dimensional billiards under numerical study.
Left: Bunimovich quarter stadium �a�R � 1�. Right: general-
ized Sinai billiard (a�b � 2, u1 � 0.2, u2 � 0.5).
placement field is normalized such that jDj � L, then we
get jMnmj

2 � �lB�L�d21. Note that the above result im-
plies that jMnmj

2 is independent of v.
To go beyond the random-wave estimate (2), we adopt

a more physically appealing point of view. We include a
parametric deformation of the billiard shape via the Ham-
iltonian H �r, p; x� � p2�2m 1 V ���r 2 xD�r����, where x
controls the deformation. Note that the displacement field
D is regarded as a function of r. The normal displacement
of a wall element is �n ? D�x. The position of a particle in
the vicinity of a wall element is conveniently described by
Q � �s, z�, where s is a surface coordinate and z is a per-
pendicular “radial” coordinate. We set V �r� � V0 outside
the undeformed billiard; later we take the limit V0 ! `.
We have ≠H �≠x � 2	n�s� ? D̂�s�
V0d�z�. The logarith-
mic derivative with respect to z of an eigenfunction on
the boundary is w�s��c�s�. For z . 0 the wave func-
tion c�r� is a decaying exponential. Hence the loga-
rithmic derivative of the wave function on the boundary
should be equal to 2

p
2mV0�h̄. Consequently one obtains

�≠H �≠x�nm � 2	�h̄k�2�m
Mnm. Thus the band profile
of Mnm is equal (up to a factor) to the band profile of the
perturbation dH due to a deformation of the boundary
(see also Refs. [5,8,9]).

FIG. 2. The band profile in the two-dimensional quarter sta-
dium at k � 400 for three choices of deformation field: dilation
(D), a generic deformation (G), and a generic deformation re-
stricted to parallel displacement of the stadium upper edge (Gp).
G and Gp are chosen to be volume preserving. In each case,
the solid line is the average jMnmj

2 (estimation error 10%) ver-
sus v � y�kn 2 km�, with y � 1, and the dashed line is the
semiclassical estimate [Eq. (4)] (estimation error 3%). We nor-
malized G and Gp so that they share the same random-wave
estimate [Eq. (2)] as D; this is shown as a horizontal dotted
line. The system-specific peak due to bouncing-ball orbits is
labeled (bb). The inset is a log-log plot with average jMnmj

2

shown as points.
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We can now use semiclassical considerations [10]. The
application to the cavity example has been introduced in
[8]. Here we summarize the recipe. One should generate
a very long (ergodic) classical trajectory, and define for
it the fluctuating quantity F �t� � 2≠H �r, p; x��≠xjx�0,
where the time dependence of F is due to the trajectory
���r�t�, p�t����. Hence

F �t� �
X
col

2my cos�ucol�Dcold�t 2 tcol� , (3)

where tcol is the time of a collision, Dcol stands for n ? D
at the point of the collision, and y cos�ucol� is the normal
component of the particle’s collision velocity. If the defor-
mation is volume preserving, then �F �t�� � 0, otherwise
it is convenient to subtract the (constant) average value.
Now one can calculate the correlation function C�t� of
the fluctuating quantity F �t�, and its Fourier transform
C̃�v� �

R
C�t� exp�ivt� dt. The semiclassical estimate

for the matrix element isøÇ µ
≠H

≠x

∂
nm

Ç2¿
�

D

2p h̄
C̃

µ
En 2 Em

h̄

∂
, (4)

where D is the mean level spacing. In practice, it is con-
venient, without loss of generality, to work with units such
that in (3) the time t is measured in units of length, and we
make the replacements m � 1 and y � 1. Then (4) can
be cast into the form �jMnmj

2� � �Dk�2p�C̃�k�, where Dk

is the mean level spacing in k.
Figure 2 shows the excellent agreement between the

actual band profile and that predicted by Eq. (4) for
generic deformations and dilation. Note that there were
no fitted parameters in this match. In all estimations of
C̃�v� we have used single trajectories of �106 consecutive
collisions.

Understanding the band profile of jMnmj
2 has now been

reduced to a matter of finding a classical theory for C̃�v�.
If we assume that Eq. (3) is a train of uncorrelated im-
pulses, then its power spectrum would be that of white
noise, namely, C̃�v� � const. A straightforward calcula-
tion [8] then leads to the random-wave result (2) already
presented. However, in reality there are correlations in this
train, and therefore we should expect C̃�v� to have some
structure on the frequency scale v � 1�tcol. By looking
at Fig. 2 we see that the white noise expectation is reason-
ably satisfied for one of the “generic” deformations (G),
but not in the other two cases (D, Gp). We also see nonuni-
versal peaks at v � 1�tcol � 1. We now explain that for
v ø 1�tcol there is total failure of the white noise result
for dilations, as well as for translations and rotations, and
discuss further complications that may arise if the billiard
system is not strongly chaotic.

In Fig. 3 we display C̃�v� for a different billiard shape,
a generalized Sinai billiard (Fig. 1), chosen because it does
not suffer from the nongeneric marginally stable orbits
found in the quarter stadium. Here we see very convincing
evidence that for small frequencies we have C̃�v� � const
1414
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FIG. 3. The classical power spectrum C̃�v� for F �t� corre-
sponding to a generic deformation (G), dilation (D), translation
(T), and rotation (R), in the case of the generalized Sinai bil-
liard with m � y � 1. The estimation error is 13% for G and
R, and 20% for D and T. The two dotted lines show v2 and
v4 frequency dependence, for purposes of comparison.

for generic deformation, C̃�v� ~ v4 for dilation and trans-
lation, and C̃�v� ~ v2 for rotation. Thus the white noise
expectation is indeed satisfied in the v ø 1�tcol regime
for generic deformations, but fails for dilations, transla-
tions, and rotations, for which C̃�v� ! 0 as v ! 0. This
property is known (in the context of eigenvalue spectra)
as “rigidity” [11]. It implies that the train of impulses is
strongly correlated, a result which at first sight seems in-
consistent with the assumption of chaotic motion. We will
explain that there is no inconsistency here.

The quantity F �t� � 2≠H �≠x is related to �p �
2≠H �≠r � 2=V , the instantaneous force on the par-
ticle, by F �t� � 2D�r� ? �p. For translations we have
D � �e, where �e is a constant vector that defines a direc-
tion in space. We can write F �t� � �d�dt�2G�t�, where
G�t� � 2m �e ? r. A similar relation holds for dilation
D � r with G�t� � 2

1
2mr2. It follows that C̃�v� �

v4C̃G�v�, where C̃G�v� is the power spectrum of G�t�.
Assuming that G �t�, unlike F �t�, is a generic fluctuating
quantity that looks like white noise, it follows that C̃�v� is
generically characterized by v4 behavior for either trans-
lations or dilations. For rotations we have D � �e 3 r,
and we can write F �t� � �d�dt�G�t�, where G�t� �
2 �e ? �r 3 p� is a projection of the particle’s angular
momentum vector. Consequently C̃�v� � v2C̃G�v�, and
we expect C̃�v� to be generically characterized by v2

behavior in the case of rotations.
In the previous paragraph we assumed that generic fluc-

tuating quantities such as r2 and �e ? r and �e ? �r 3 p�, as
well as F �t� for any generic deformations, have a white
noise power spectrum as v ! 0. Obviously, this “white
noise assumption” should be verified for any particular
example. If the motion is not strongly chaotic, mean-
ing that C�t� decays like a power law (say, 1�t12g with
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0 , g , 1) rather than an exponential, then the universal
behavior is modified: we may have v2g behavior for small
frequencies. For a generic system, for instance, the gen-
eralized Sinai billiard, we do not have this complication.
The stadium example on the other hand is nongeneric: the
trajectory can remain in the marginally stable “bouncing-
ball” orbit (between the top and bottom edges) for long
times, with a probability scaling as a power law in time.
Depending on the choice of D�r�, this may manifest itself
in C�t�. For example, in Fig. 2 the deformation Gp in-
volves a parallel displacement of the upper edge, and the
resulting sensitivity to the bouncing-ball orbit leads to large
enhancement of the fluctuation intensity C̃�v � 0�, and is
suggestive of singular v2g behavior for small v.

Finally, consider the time-dependent problem which is
described by the Hamiltonian H ���r, p; x�t����. It is well
known that under quite general circumstances the dissipa-
tion is Ohmic �~ �x2� (see [8,12], and references therein).
If x�t� � A sin�vt�, linear response theory gives the long-
time heating rate d�H ��dt � m ?

1
2 �vA�2. The dissipa-

tion coefficient m is determined by the matrix elements of
(4) (which up to a factor equals jMnmj

2), and therefore m

is proportional to C̃�v�. Our results imply that m van-
ishes in the limit v ! 0 for translations. One should not
be surprised [4], since this follows from Galilean invari-
ance: One can view the limit v ! 0 as corresponding to
the special case of constant �x. For constant nonzero �x the
particle(s) in the cavity accommodate their motion to the
reference frame of the cavity, and there is no dissipation.
A similar argument holds for rotations. On the other hand,
it is somewhat surprising that the same conclusion holds
for dilations (the only other shape-preserving deformation)
as well. This observation, as far as we know, has not been
introduced previously in the literature.

We thank Eduardo Vergini and Mike Haggerty for im-
portant discussions. This work was supported by ITAMP
and the National Science Foundation.

Appendix.—There exist a couple of lengthy vector-
identity proofs [9,13] of the normalization Mnn � 1 for
the dilation case D � r, for d � 2. Here we present a
physically illuminating alternative that works for arbi-
trary d. We use a phase-space-preserving definition of
dilation operator U�a� � exp�iaG�h̄�. It is generated by
the Hermitian operator G � 1

2 �r ? p 1 p ? r�. Applying
this dilation to wave functions gives the expansion,

U�a�c�r� � c�r� 1 a	�d�2�c 1 r ? =c
 1 O �a2� .
(5)

The operator also has the effect UyrU � ear and
UypU � e2ap. Consider now any Hamiltonian H0 �
p2��2m� 1 V �r�. By defining the parameter-dependent
version H �r, p; a� � U�a�H0�r, p�U�a�y, it is
straightforward to obtain

≠H

≠a

Ç
a�0

�
p2

m
2 r ? =V , (6)

whose matrix elements in the case of the billiard poten-
tial are �≠H �≠a�nm � 	�h̄k�2�m
 	dnm 2 Mnm
. Thus
the nondiagonal terms are the same as those of the de-
formation D � r. The diagonal elements can be calcu-
lated directly by taking the limit a ! 0 of the expression
��UcjH0jUc� 2 �cjH0jc���a. By using (5) and the
fact that �cjr ? =jc� � 2d�2, one can easily show that
the result equals zero. From here it follows that Mnn � 1.
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