
ar
X

iv
:0

70
8.

42
37

v3
  [

co
nd

-m
at

.m
es

-h
al

l]
  1

 J
an

 2
00

8

Restricted quantum-classical correspondence

and counting statistics for a coherent transition

Maya Chuchem and Doron Cohen
Department of Physics, Ben-Gurion University, Beer-Sheva 84105, Israel

The conventional probabilistic point of view implies that if a particle has a probability p to
make a transition from one site to another site, then the average transport should be 〈Q〉 = p

with a variance Var(Q) = (1 − p)p. In the quantum mechanical context this observation becomes
a non-trivial manifestation of restricted quantum-classical correspondence. We demonstrate this
observation by considering the full counting statistics which is associated with a two level coherent
transition in the context of a continuous quantum measurement process. In particular we test
the possibility of getting a valid result for Var(Q) within the framework of the adiabatic picture,
analyzing the simplest non-trivial example of a Landau-Zener crossing.

I. INTRODUCTION

The discussion of quantum-classical correspondence
(QCC) in the mathematical physics literature is as old
as the history of quantum mechanics. Traditionally one
has in mind complicated semiclassical approximation
schemes for calculating the propagation of wavepackets.
A more elaborated analysis of the spreading process [1],
leads to the distinction between robust restricted QCC

and fragile detailed QCC. Restricted QCC means that
〈A〉qm ≈ 〈A〉cl holds only for a restricted set of observ-
ables, and survives even in the presence of diffraction,
while detailed QCC means 〈A〉qm ≈ 〈A〉cl for all the well
behaved observables, and requires smooth potentials as
in the traditional formulation.

Controlling atoms in a few site system is state of the
art [2, 3]. The prevailing studies are focused in restricted
questions such as “what is the probability for a transition
from one site to the other site” [4, 5]. But what about
the associated noise [6, 7] and the full counting statistics
(FCS) of a quantum transition? We argue below that
the simplest example of a single particle in a closed two
site system can be worked out exactly so as to illuminate
the essence of restricted QCC in the context of FCS
studies. This has the side benefit of shedding new light
on the vague picture in the pioneering works [8, 9] about
shot noise, where the discussion of FCS is immersed
in complicated diagrammatic calculations involving a
many-body system of Fermions in an open geometry,
hence obscuring the simple physics that underlays the
bottom line results. While most follow-up publications
about FCS [10, 11, 12, 13, 14] are aimed in studying
the distribution of transmission eigenvalues, our concern
below is with some fundamental aspects that distinguish
quantum dynamics from its classical stochastic analog.

We consider the simplest non-trivial example: the adi-
abatic crossing of a particle from one site to another
site, which involves a two level Landau-Zener transition
[15, 16, 17, 18]. Within the framework of a classical prob-
abilistic point of view the particle has some probability p
to make the transition. In any particular realization the

particle either makes the transition or not. Accordingly
the integrated current from the first to the second site is
either Q = 1 or Q = 0 respectively. It follows that

〈Q〉 = p (1)

with the variance

Var(Q) = (1 − p)p (2)

This classical probabilistic point of view does not hold
in the quantum mechanical reality. The characterization
of the full counting statistics requires some care in
the description of a continuous quantum measurement.
Accordingly one has to distinguish between the naive
mathematical definition [8] of the Q probability distribu-
tion P(Q), and the proper physical definition [20] of the
quasi-probability distribution P(Q;x), where x signifies
the strength of the interaction with the detector. It is
important to realize that in general P(Q;x=0) is not
the same as P(Q), but still they have the same first and
second moments.

This paper has two parts. In the first part we estab-
lish restricted QCC for the counting statistics using gen-
eral principles. In the second part we study whether the
adiabatic approximation can be used in order to derive
leading order results. The importance of the latter anal-
ysis becomes apparent once one tries to obtain results for
more complicated multiple-path geometries where exact
solution for P(Q) is out of reach. We further discuss this
latter point in the concluding section.

II. RESTRICTED QCC FOR MOMENTS OF Q

For a general network that consists of several sites we
can define a set of occupation operators N and current
operators I. In the Heisenberg picture the time deriva-
tive of any occupation operator equals a sum over the
ingoing current operators. In order to demonstrate the
general idea of restricted QCC we consider below the sim-
plest example of one particle in a two-site system. The
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model Hamiltonian in the position basis is

H =

(

αt/2 c
c −αt/2

)

, (3)

where c is the hopping amplitude. We define an occupa-
tion operator N and a current operator I as follows:

N =

(

0 0
0 1

)

. (4)

I =

(

0 ic
−ic 0

)

(5)

Using the Heisenberg picture the two are related by the
equation

d

dt
N (t) = I(t) (6)

where I(t) = U(t)†IU(t), and U(t) is the evolution op-
erator. Consequently it is useful to define a counting
(“transported charge”) operator:

Q =

∫ t

0

I(t′)dt′ (7)

From the Heisenberg equation of motion Eq.(6) it fol-
lows that the occupation probability 〈N (t)〉 and the
probability current 〈I(t)〉 are related by a continuity

equation. But in fact we can derive a stronger statement.
By integrating Eq.(6) over time one obtains

Q = N (t) −N (0) (8)

Assuming that the particle is initially in the left site,
which is a zero eigenstate of N , one concludes the non-
trivial relation

〈Qk〉 = 〈N k〉t for k = 1, 2. (9)

This relation between the kth moment of the counting
operator (as determined in the Heisenberg picture by
an expectation value at the reference time t=0) and the
kth moment of the occupation operator (as determined
in the Schrodinger picture by an expectation value at
time t) does not hold for k > 2, because the operators in
〈0|[N (t) −N (0)]k|0〉 are non-commuting.

Thus for a coherent quantum transition where initially
〈N k〉0 = 0, we find at the end of the process 〈N k〉t = p,
and consequently it follows that 〈Qk〉 = p for k = 1, 2,
leading to Eq.(1) and Eq.(2). But the higher moments
would be different compared with the classical expecta-
tion, as further discussed in the next section, and there-
fore we have here a very simple example for restricted

rather than detailed QCC.

III. THE FCS - NAIVE RESULTS

Both Eq.(1) and Eq.(2) can be derived on the basis
of a classical probabilistic point of view. The classical
reasoning is based on the following idea regarding the
counting statistics:

P(Q) =

{

1−p for Q = 0
p for Q = 1

(10)

The kth moment of this probability distribution is
〈Qk〉 = p, leading to Eq.(1) as well as to Eq.(2). But
we are going to explain that the classical reasoning is
wrong: It is wrong both according to the naive math-
ematical definition of P(Q), and also according to the
proper physical definition of P(Q;x), which we review in
Appendix A. Consequently in the present section we de-
rive the mathematically correct results for P(Q), while in
the next section we work out the physically meaningful
result for P(Q;x).

Let us elaborate on the straightforward procedure for
naive FCS calculation. The first step is to write the cur-
rent operator in the Heisenberg picture:

I(t)nm = 〈n|U(t)†IU(t)|m〉 (11)

It is important to realize that the current operator and
hence the counting operator have a zero trace. Conse-
quently integrating over time we get

Qnm ≡
(

+Q‖ iQ⊥

−iQ∗
⊥ −Q‖

)

(12)

The first two moments 〈Q〉 and 〈Q2〉 are obtained from
this matrix, leading to the identifications:

〈Q〉 = Q‖ (13)

Var(Q) = |Q⊥|2 (14)

The zero trace property also implies that the eigenvalues
of Q are opposite in sign:

Q± = ±
√

(Q‖)2 + |Q⊥|2 (15)

On the basis of the continuity equation we can argue that
〈Q〉ψ ≤ 1 for any preparation. Therefore we must get
|Q±| ≤ 1. In fact we can deduce much more on the basis
of restricted QCC. Observing that Eq.(13) and Eq.(14)
should be in agreement with Eq.(1) and Eq.(2) one de-
duces that

Q‖ = p (16)

Q⊥ =
√

(1−p)p × PhaseFactor (17)

If we could regard Q as a conventional observable, then
upon measurement its observed values would have the
distribution

P(Q) =

{

p− for Q = Q−

p+ for Q = Q+
(18)
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This distribution is characterized by two parameters be-
cause Q± are opposite and sign, and p± sum up to unity.
Restricted QCC provides the two equations 〈Q〉 = p and
〈Q2〉 = p that can be solved, leading to

Q± = ±√
p (19)

p± =
1

2
(1 ±√

p) (20)

where the expression for Q± is in agreement with
Eqs.(15)-(17) of the previous paragraph. A look-alike re-
sult had been obtained for shot noise of Fermions using
complicated diagrammatic techniques [8]. An equivalent
way to express Eq.(18) is to say that the kth moment is

〈Qk〉 = p+Q
k
+ + p−Q

k
− = p⌊k+1

2 ⌋ (21)

where k = 0, 1, 2, 3, ... and ⌊...⌋ stands for the integer part
(i.e. rounded downwards). The corresponding classical
result is p irrespective of k. One may say that we have
encountered here the simplest example of restricted QCC.

IV. THE FCS - PHYSICAL RESULTS

In a later publication [9] the naive mathematical def-
inition of the full counting statistics has been criticized.
The most illuminating approach [20] is to analyze the re-
duced dynamics of the detector. Using the standard von-
Neumann pointer scheme [21] and transforming to the
Wigner representation one deduces that the final state
ρ(q, x) of the pointer is the convolution of its initial state
with a kernel P(q−q′;x), as defined in Eq.(A5). It follows
that

P(Q;x=0) = (22)

1

2π

∫
〈

[

T e−i(r/2)Q
]† [

T e+i(r/2)Q
]

〉

e−iQrdr

can be regarded as a quasi-distribution that describes
the full quantum statistics. It is of course a physically
measurable object. The naive mathematical definition is
obtained if we ignore time ordering:

P(Q) =
1

2π

∫

〈

e+irQ
〉

e−iQrdr

= 〈δ(Q−Q)〉 (23)

In general the calculation of P(Q;x=0) is very compli-
cated. But we can gain some insight by considering the
simplest case of a Bloch transition, which is Eq.(3) with
α = 0. After time t the probability to find the particle
in the second site is p = [sin(ct)]2. The expectation value
in the integrand of Eq.(22) is

P̃(r) = 1 − r

(r/2) + i

[

sin
(

ct
√

1 + (r/2)2
)]2

(24)

[More conveniently one can use instead of Eq.(22) the
equivalent expression Eq.(A5), where the Us can be in-
terpreted as spin 1/2 rotation matrices]. In order to get

P(Q;x=0) we have to Fourier transform (FT) the func-

tion P̃(r). For the purpose of discussion let us assume
long times (ct≫ 1) so as to have separation of scales.
Then we can distinguish between a central part where
P̃(r) ≈ 1 + ipr − (1/2)pr2 + ... as implies by restricted

QCC, and oscillatory far tails where P̃(r) ≈ cos(ctr). The
FT of the central part gives a non-singular exponential-
like piece, while the FT of the tails contributes two delta
functions (1/2)δ(Q± ct) which are screened by negative
clouds as illustrated in Fig. 1. We can regard the singu-
lar delta functions at Q = ±ct as the remnants of those
that are centered at Q± = ±√

p in the naive calculation.
It is interesting that for long time their location reflects
the eigenvalues of the current operator rather than the
eigenvalues of the counting operator.

Fig. 2 is a caricature that illustrates the significance of
the FCS results with regard to the outcome of a quantum
measurement. We sketch the final probability distribu-
tion of the Von Neumann pointer as implied by different
“conceptions” . The upper panel is based on the classi-
cal expectation of having either Q = 0 or Q = 1 displace-
ment. The middle panel is the naive quantum mechani-
cal prediction that suggestsQ = Q± displacements, while
the lower panel is the actual quantum prediction based
on a convolution with P(Q;x). An actual numerical illus-
tration for the outcome of this convolution is presented
in Fig. 3. Needless to say that in principle one can mea-
sure not only the q distribution but the whole probability
matrix so as to determine P(Q;x) and in particular the
quasi probability distribution P(Q;x=0) via a deconvolu-
tion procedure. But looking in Fig. 3, it is nice to realize
that the main features of the FCS are not smeared and
pop to the eyes even without any deconvolution.

V. FCS IN THE ADIABATIC

APPROXIMATION

In the following sections we would like to examine the
capabilities of the leading order adiabatic approximation
in obtaining physically significant results for Var(Q). We
consider the model system of Eq.(3). Initially (at t=−∞)
the particle is in the ground state, which is the left site.
The probability at t=∞ to find the particle in the right
site is

p = 1 − PLZ (25)

where

PLZ = exp

[

−2π
c2

α

]

≡ exp
[

−π
2
γ
]

(26)

is the Landau-Zener probability to make a transition
from the lower to the upper energy level. The rate of
the driving is characterized by the dimensionless param-
eter

γ = (2c)2/α. (27)
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The straightforward way to calculate Var(Q) is also the
most complicated one, because it requires an explicit
evaluation of the evolution operator U(t). For our two
site system this can be done using parabolic cylinder
functions [18]. But having in mind more complex sys-
tems [23], for which exact solution are not available, we
would like to make the explicit calculation within the
framework of the adiabatic approximation:

U(t) ≈
∑

n

∣

∣

∣
n(t)

〉

exp

[

−i
∫ t

t0

En(t′)dt′
]

〈

n(t0)
∣

∣

∣

In this expression |n(t)〉 and En(t) are the so-called adi-
abatic states and the adiabatic energies [16]. The as-
sociated expression for the matrix elements of the time
dependent current operator in the Heisenberg picture is:

I(t)nm = 〈n|U(t)†IU(t)|m〉

≈ 〈n(t)|I|m(t)〉 × exp

[

i

∫ t

t0

Enm(t′)dt′
]

=

(

... iceiΦ(t)

−ice−iΦ(t) ...

)

(28)

where

Φ(t) =

∫ t
√

(αt)2 + (2c)2 dt′ (29)

Using the zero order (O(α0)) adiabatic states we get for
the off diagonal terms Q⊥ ≈ QLZ where

QLZ ≡ γ

2

∫ ∞

−∞

eiΦ(τ)dτ

=
γ

2

∫ ∞

−∞

cosh(z) eiΦ(z)dz (30)

Above we use the substitution t = (2c/α)τ followed by
τ = sinh(z).

Before we go on with the calculation of QLZ we would
like to comment on the calculation of the diagonal terms
in Eq.(28). This terms are trivially related via Eq.(16) to
the Landau-Zener transition probability PLZ of Eq.(26).
The leading order estimate of this probability is based on
a conventional time dependent treatment [17], leading to

PLZ ≈
∣

∣

∣

∣

1

2

∫ ∞

−∞

1

τ2 + 1
eiΦ(τ)dτ

∣

∣

∣

∣

2

=

∣

∣

∣

∣

1

2

∫ ∞

−∞

1

cosh(z)
eiΦ(z)dz

∣

∣

∣

∣

2

(31)

It is important to realize that in the zero order adia-
batic approximation we get zero for the diagonal terms
of Eq.(28), because the zero order adiabatic states are
time-reversal symmetric and hence do not support non-
zero average current. If we use the first order (O(α1))
adiabatic states we get for the diagonal terms ±1 but
still miss the non-adiabatic PLZ correction. It is there-
fore non-trivial and requires verification that Q⊥ ≈ QLZ

is a valid approximation.

VI. THE CALCULATION OF QLZ

In order to evaluate QLZ of Eq.(30) we use the contour
integration method as in Ref.[17]. The explicit expression
for the phase Φ as a function of z = x+ iy is

Φ(t) =
γ

2

(

z +
1

2
sinh(2z)

)

(32)

=
γ

2

[(

x+
1

2
sinh(2x) cos(2y)

)

+i

(

y +
1

2
cosh(2x) sin(2y)

)]

The contour of integration in Eq.(30) is y = 0, but we
would like to deform it into the complex plane so as to get
rid of the rapid oscillations of the phase factor, and have
instead a smooth monotonic variation. The deformed
contour is displayed in Fig. 4. The phase is pure imagi-
nary along the curves C− and C+. At z0 = 0 + i(π/2) we
have Φ = i(π/4)γ, while cosh z ≈ i(z−z0). Consequently
in the PLZ integral of Eq.(31) we have a pole leading to
the standard LZ results (disregarding the prefactor which
requires higher orders). But in the case of the QLZ in-
tegral Eq.(30) we do not have a pole: rather we have
to consider the non singular part that comes from the
integration along the C± curves. One observes that

QLZ =

∫

C−+C+

...dz = 2ℜ
∫

C+

...dz

=

∫ ∞

0

f(x) eiΦ(x)dx

where

iΦ(x) = −γ
4

[

π − arccos

(

2x

sinh(2x)

)

+

[

1 −
(

2x

sinh(2x)

)2
]1/2

cosh(2x)





and

f(x) =
γ√
2

[

1− 2x

sinh(2x)

]−1/2 (

sinh(4x) − 4x

cosh(4x) − 1

)

sinh(x)

Deep in the adiabatic regime (γ ≫ 1) the integration is
dominated by the small x interval where f(x) ∝ γx and
[Φ(x)−Φ(0)] ∝ γx3. Accordingly

QLZ ∼ γ1/3 exp
[

−π
4
γ
]

(33)

Inspired by the calculation procedure of PLZ in Ref.[16],
our speculation is that also here the pre-exponential term
would be renormalized to unity by higher orders, which
would imply consistency with the expected (exact) result

|Q⊥| =
√

(1 − PLZ)PLZ that follows from Eq.(17).
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VII. DISCUSSION

We have demonstrated how restricted QCC can be es-
tablished and utilized in order to determine the counting
statistics of a quantum coherent transition. It is impor-
tant to realize that this procedure has some limitations.
Namely, if we had considered not a two site system but a
more complex system with multiple path geometry, then
the same considerations would not allow to deduce the
variance Var(Q) of the integrated current. In particu-
lar one wonders what happens if a particle has two op-
tional paths available to get from one site to another
site [22]. Within the framework of the classical proba-
bilistic theory, a splitter would imply a noisy outgoing
current. But in Ref.[23] we argue that the coherent split-
ting of a wavepaket is not noisy, and furthermore that
the whole study of fluctuations in quantum stirring de-
vices requires to go beyond QCC considerations. Con-
sequently the problem that has been raised in Ref.[23]
has motivated us to study the capabilities of the leading
order adiabatic approximation for the purpose of calcu-
lating Var(Q).

The calculation of the Landau-Zener transition proba-
bility PLZ and the associated dispersionQLZ in the leading
order adiabatic approximation yields a contour integral
in the complex plane. While the PLZ integral is dom-
inated by a pole, the QLZ integration is related to the
corresponding principal part. Restricted QCC implies
that PLZ and QLZ are related. Our analysis has demon-
strated that the dominant exponential term is correctly
reproduced, but not the pre-exponential term which ap-
parently requires infinite order.

The traditional QCC principle is based on the semi-
classical approximation and implies detailed QCC for all
the moments up to the quantum resolution limit. In
contrast to that restricted QCC is very robust, and sur-
vives even in the presence of diffraction [1]. The Landau-
Zener problem is possibly the simplest non-trivial exam-
ple where this idea can be demonstrated. For some more
complicated (chaotic) systems restricted QCC can be es-
tablished as an approximation in the long time limit, on
the basis of the short time perturbative analysis which
is extrapolated using the central limit theorem. It would
be interesting to explore the implications of coupling to
the environment in this context [24].
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APPENDIX A: THE VON-NEUMANN

MEASUREMENT SCHEME

In this section we present a short simple derivation of
the main result of Ref.[20] regarding the measurement
of the full quantum statistics. The original derivation
has been based on an over-complicated path integral ap-
proach.

The coupling of the system to a Von-Nuemann pointer
[21] whose canonical coordinates are (x̂, q̂) is described
by the Hamiltonian

Htotal = H(t) − Ix̂ (A1)

The states of system can be expanded in some basis |n〉,
and accordingly for the system with the detector we can
use the basis |n, x〉. The representation of the evolution
operator is

U(n, x|n0, x0) = U [x]n,n0
δ(x − x0) (A2)

where U [x] is a system operator that depends on the
constant parameter x. We formally write its explicit ex-
pression both in the Schrodinger picture and also in the
interaction picture using time ordered exponentiation:

U [x] = T exp

[

−i
∫ t

0

(H− xI)dt′
]

= U [0] T exp

[

ix

∫ t

0

I(t′)dt′
]

(A3)

The time evolution of the detector is described by its
reduced probability matrix

ρt(x
′′, x′) =

∑

n,n′

0,n
′′

0

∫

dx′0dx
′′
0

U(n, x′′|n′′
0 , x

′′
0 )U(n, x′|n′

0, x
′
0)

∗ ρsys

n′′

0 ,n
′

0
ρ0(x

′′
0 , x

′
0)

=





∑

n,n′

0,n
′′

0

U [x′′]n,n′′

0
U [x′]∗n,n′

0
ρsys

n′′

0 ,n
′

0



 ρ0(x
′′, x′)

where ρsys = |ψ〉〈ψ| is the initial state of the system,
and ρ0(x

′′
0 , x

′
0) is the initial preparation of the detector.

Transforming to the Wigner function representation we
get the convolution

ρt(q, x) =

∫

P(q − q′;x)ρ0(q
′, x)dq′ (A4)

where

P(Q;x) = (A5)

1

2π

∫

〈

ψ
∣

∣

∣
U [x− (r/2)]†U [x+ (r/2)]

∣

∣

∣
ψ

〉

e−iQrdr



6

[1] A. Stotland and D. Cohen, J. Phys. A 39, 10703 (2006),
and further references therein.

[2] C.S. Chuu, F. Schreck, T.P. Meyrath, J.L. Hanssen, G.N.
Price, and M.G. Raizen, Phys. Rev. Lett. 95, 260403
(2005).

[3] A. M. Dudarev, M. G. Raizen, and Q. Niu, Phys. Rev.
Lett. 98, 063001 (2007).

[4] B. Wu and J. Liu, Phys. Rev. Lett. 96, 020405 (2006).
[5] J. Liu, B. Wu, Q. Niu, Phys. Rev. Lett. 90, 170404

(2003).
[6] T. Hirano and T. Kuga, Journal of Quantum Electronics,

31, 2236 (1995).
[7] H. Sumitomo, M. Yamanishi, Y. Kadoya, Phys. Rev. B

65, 165326 (2002).
[8] L.S. Levitov and G.B. Lesovik, JETP Letters 55, 555

(1992).
[9] L.S. Levitov and G.B. Lesovik, JETP Letters 58, 230

(1993).
[10] Ya.M. Blanter and M. Buttiker, Physics Reports 336, 1

(2000), and references therein.
[11] Y. Imry, Introduction to Mesoscopic Physics (Oxford

Univ. Press 1997), and references therein.
[12] H. Lee, L.S. Levitov, and A.Yu Yakovets, Phys. Rev. B

51 4079 (1995).
[13] C. W. J. Beenakker and M. Buttiker, Phys. Rev. B 46,

1889 (1992).
[14] O. Agam, I. L. Aleiner, and A. I. Larkin, Phys. Rev. Lett.

85, 3153 (2000).
[15] C. Zener, Proc. R. Soc. Lond. A 317, 61 (1932).
[16] M.V. Berry, Proc. R. Soc. A 429, 61 (1990)
[17] S. Fishman, K. Mullen and E. Ben-Jacob, Phys. Rev. A

42, 5181 (1990).
[18] N.V. Vitanov and B.M. Garraway, Phys. Rev. A 53, 4288

(1996).
[19] Hiroki Nakamura, Nonadiabatic Transition: Concepts,

Basic Theories and Applications (World Scientific, 2002)
[20] Y.V. Nazarov and M. Kindermann, European Physical

Journal B 35, 413 (2003).
[21] H. Everett, Rev. Mod. Phys. 29, 454 (1957).
[22] E. Buks1, R. Schuster1, M. Heiblum1, D. Mahalu1 and

V. Umansky, Nature 391, 871 (1998).
[23] M. Chuchem and D. Cohen, arXiv:0704.3506 (2007).
[24] E. Shimshoni and Y. Gefen, Ann. of Phys. 210, 16 (1991)

http://arxiv.org/abs/0704.3506


7

Fig.1: Numerical calculation of the full counting statistics kernel

P(Q;x=0) for a coherent Bloch transition from one site to another

site. The evolution is governed by the Hamiltonian of Eq.(3) with

α = 0 and ct = 5. The thick bars represent delta functions. See

the text for further explanations.
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Fig.2: A caricature that illustrates the final probability distribu-

tion of the Von Neumann pointer q. It is assumed that the initial

state is a wavepacked that is concentrated at q ∼ 0. The upper

panel is based on the classical expectation of having either Q = 0

or Q = 1 displacement. The middle panel is the naive quantum

mechanical prediction that suggests Q = Q± displacements, while

the lower panel is the actual quantum prediction based on a con-

volution with P(Q; x).
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Fig.3: Numerical calculation that illustrates the final probabil-

ity distribution of the Von Neumann pointer q corresponding to

the lower panel in Fig. 2. The parameters are the same as in

Fig. 1. The initial preparation is a Gaussian wavepacket centered

at q = x = 0 of width σx = 1.2 (solid line), and σx = 0.8 (dashed

line), and σx = 0.5 (dotted line). Its evolution has been calculated

using Eq.(A4) with Eq.(A5).
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Fig.4: The calculation of PLZ and QLZ is done by deforming the in-

tegration contour into the complex plane. The integration is along

the curves C± where the integrand is non-oscillatory, and along the

arc C0 that encircles the pole P at z0 = 0 + i(π/2). The contri-

butions of the (non-displayed) vertical segments that connect C−

and C+ to the real axis at infinity can be neglected.


