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Abstract

A current can be induced in a closed device by changing control parameters. The amount Q of particles that are transported

via a path of motion, is characterized by its expectation value 〈Q〉, and by its variance Var(Q). We show that quantum

mechanics invalidates some common conceptions about this statistics. We first consider the process of a double path crossing,

which is the prototype example for counting statistics in multiple path non-trivial geometry. We find out that contrary to

the common expectation, this process does not lead to partition noise. Then we analyze a full stirring cycle that consists

of a sequence of two Landau-Zener crossings. We find out that quite generally counting statistics and occupation statistics

become unrelated, and that quantum interference affects them in different ways.
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1. Introduction

Consider a closed isolated quantum system, say a

3 site ring as in Fig.1. Quite generally, in the absence

of magnetic field, the stationary states of the system

carry zero current. If one wants to have a non-zero cur-

rent I through a section of the device, one has either to

prepare it in a non-stationary state or to drive the sys-

tem. Driving means changing some parameters in time.

During a time period t the amount of particles that

get through the section is Q. One may ask what is the

distribution of the measured Q, and in particular what

is the expectation value 〈Q〉, and what is the variance

Var(Q). This is known as counting statistics [3,4,5].

1 Physica E 42, 558-563 (2010). Special issue.
Proceedings of FQMT conference (Prague, 2008).

Typically the driving is periodic, and Q is defined as

the amount of particles that are transported per pe-

riod. The feasibility to have non-zeroQ (non zero “DC”

current) due to periodic (“AC”) driving is known in

the context of open geometry as “quantum pumping”

[1,2]. We use the term “quantum stirring” [6,7] in or-

der to describe the analogous effect with regard to a

closed device [8].

The theory of quantum pumping and counting

statistics in open geometries is well studied. Any at-

tempt to adopt ideas from this literature to the present

context of quantum stirring is dangerous, and likely to

result in major misconceptions, which following [9,10]

we would like to highlight. For this purpose let us

consider the simplest model that can be imagined: a

particle in a 3-site system (Fig.1). We assume that

http://arxiv.org/abs/0912.1690v1
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Fig. 1. Toy models that are analyzed in this paper: a par-
ticle in a 2 site system (upper illustration), and a particle

in a 3 site system (lower illustration). Initially the parti-
cle is prepared in the |0〉 site where it has a potential en-
ergy u. The hopping amplitudes per unit time (the cs) are
also indicated. In the case of a 3 site system, the time units
are chosen such that the hopping amplitude per unit time
between |1〉 and |2〉 equals unity, while the other ampli-
tudes are assumed to be small (|c1|, |c2| ≪ 1). The current
is measured through the dotted section.

we have a control over the potential u of the left site,

and over the couplings c1 and c2 that bind the left

site to the right sites. The transported Q is measured

through one of these two bonds. Let us introduce two

simple questions that will be answered later on.

Question 1. – We start with a very negative u and

prepare a particle in the left site. Then we gradually

raise u so as to have an adiabatic transfer of the par-

ticle to the right side. If we had c1 6= 0 but c2 = 0 one

obviously expects in the strict adiabatic limit Q = 1

with zero variance. We ask: what would be the corre-

sponding result if we have |c1| = |c2|, and more gener-

ally how does the result depend on the relative size of

the couplings? If the |c1| coupling is larger, does the

result reflect having (say) Q = 1 with 70% probability

and Q = 0 with 30% probability?

Question 2. – During a cycle a conventional pump

takes an electron from the left lead and ejects it to the

right lead. Hence the pumped charge per cycle for a

leaky pump is Q < 1. Now we integrate this quantum

pump into a closed circuit and operate it. We ask what

is the statistics of Q in the new (integrated) configura-

tion. Can it be much different? What are the maximal

〈Q〉 and minimal Var(Q) that can be achieved per cy-

cle? Are they both proportional to the number of the

cycles as in the classical reasoning, leading to ∼
√
t sig-

E

E

c1=c
c2=0

c1=0
c2=c

time

−

+

0E

Fig. 2. The adiabatic levels of the 3-site Hamiltonian dur-
ing one period of a pumping cycle. In the absence of cou-
pling (c1 = c2 = 0) the E0 = u(t) level intersects the sym-
metric E+ = 1 level. With non zero coupling these inter-
sections become avoided crossings, and the particle follows
adiabatically the thickened lines. For presentation purpose
we indicate that either c1 or c2 equal zero (“blocked”), but
in the general analysis we allow any splitting ratio, includ-
ing the possibility c1 = c2 of having the same amplitude to
take either of the two paths.

nal to noise ratio?

Outline. – In the next section we define the model

and the counting operator Q(t). In sections 3 and 4

we discuss the restricted quantum-classical correspon-

dence that applies to the analysis of single path cross-

ing, while in sections 5 we consider multiple path ge-

ometries. How to treat interference in a sequence of

Landau-Zener crossings and the analysis of quantum

stirring are discussed in section 6. The long time count-

ing statistics is discussed in sections 7 and 8. The rela-

tion to the theory of spreading and dissipation is illu-

minated in section 9. The main observations are sum-

marized in section 10.

2. Modeling

We consider the 3 site system of Fig.1 which is de-

scribed by the Hamiltonian

H =

0

B

B

B

B

@

u c1 c2

c1 0 1

c2 1 0

1

C

C

C

C

A

(1)

We label the sites by i = 0, 1, 2. We have control over

the potentialE0 = u of the left site (#0). The two right

sites (#1 and #2) are permanently coupled to each
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other forming a double well with energy levelsE− = −1

and E+ = +1. We also have relatively small couplings

(|c1|2, |c2|2 ≪ 1) that allow transitions between the left

and the right sites.

Later we consider the stirring cycle which is de-

scribed in Fig.2. Its operation is inspired by the com-

mon peristaltic mechanism. Namely, the coupling con-

stants c1 and c2 are regarded as “valves”. In the first

half of the cycle c2 = 0 and u is raised, leading to an adi-

abatic transfer from-left-to-right via the 0 7→ 1 bond.

In the second half of the cycle c1 = 0 and u is lowered,

leading to an adiabatic transfer from-right-to-left via

the 0 7→ 2 bond. The net effect is to pump one particle

per cycle.

The matrix representation of the operator which is

associated with the current through the 0 7→ 1 bond is

I =

0

B

B

B

B

@

0 ic1 0

−ic1 0 0

0 0 0

1

C

C

C

C

A

(2)

In the Heisenberg picture the time dependent current

operator is defined as I(t) = U(t)†IU(t), where U(t)

is the evolution operator. Consequently the counting

operator is defined as

Q =

Z t

0

I(t′)dt′ (3)

The counting operator, unlike the current operator, is

not a conventional observable in quantum mechanics.

What can be measured in practice are only the first

two moments of Q, which are 〈Q〉 and Var(Q). Still,

on the mathematical side, it is convenient to treat Q
the same way as one treats conventional observables.

Namely, to regards its eigenvalues Qr as the possible

outcomes of a measurement, and to associate with a

given preparation ψ a probability distribution

P(Qr) = |〈Qr|ψ〉|2 [naive!] (4)

We shall refer to Eq.(4) as the naive definition of the

full counting statistics. The physical definition of P(Q)

is much more complicated [3,4], but it leads to the

same first and second moments [9]. In the present paper

we are not interested in the full counting statistics,

but only in the first two moments, and therefore, for

presentation purpose, we adopt the naive point of view.

3. Single path crossing

Let us consider first the very simple case of 2-site

systems with left site (#0) and right site (#1). The

particle is prepared in the left site and after some time

has some probability p to be found in the right site. This

probability can be regarded as the expectation value

of the occupation operator N that has the eigenvalues

0 or 1 depending on whether the particle is in state #0

or state #1.

In the classical analysis the possible outcomes of a

measurement are N = Q = 1 if the particle goes from

left to right, and N = Q = 0 otherwise. Obviously one

should find out that

P(Q) =

8

>

<

>

:

p for Q = 1

1−p for Q = 0
(5)

It follows that the kth moment is 〈Qk〉 = p and there-

fore

〈Q〉 = p (6)

Var(Q) = (1 − p)p (7)

In the quantum mechanical treatment the counting

operator is the integral over the current operator which

has zero trace, so it should also be a 2×2 traceless

Hermitian matrix which we write in the i=0, 1 basis as

Q =

0

B

@

+Q‖ iQ⊥

−iQ∗
⊥ −Q‖

1

C

A
(8)

If the particle is initially prepared in the #0 site then

〈Q〉 = Q‖ and Var(Q) = |Q⊥|2. So now the question

arises whether one should expect an agreement be-

tween the quantum result and the classical results for

the first and second moments. In the next section we

argue that for a single path geometry the answer is

yes: The first and second moments of Q should both

equal p. It follows that the matrix that represents the

counting operator in the i=0, 1 basis is expressible in

terms of p and an extra phase:

Q =

0

B

@

+p i
p

(1−p)p eiφ

−i
p

(1−p)p e−iφ −p

1

C

A
(9)

Later we are going to use this expression as a building

block in the analysis of a multiple crossing scenario.
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For completeness we note that from the above anal-

ysis it follows that the eigenvalues of the counting op-

erator are Q± = ±√
p with

P(Q) =

8

>

<

>

:

(1+
√
p)/2 for Q = Q−

(1−√
p)/2 for Q = Q+

(10)

which should be contrasted with Eq.(5). The proper

analysis [9] of the full counting statistics gives a more

complicated quasi-distribution that neither agrees with

the naive nor with the classical result, but still has the

same first and second moments.

The above analysis has assumed nothing about the

detailed form of the 2×2 Hamiltonian. We merely had

assumed that the particle was prepared in site #0, and

that after time t there is some probability p to find the

particle in site #1. However, in the later sections we are

going to discuss specifically adiabatic crossings. Dur-

ing such a process the on-site energies (E0=u(t) and

E1=const) cross each other, and due to the inter-site

coupling (=c) the particle is adiabatically transferred

from #0 to #1. Still there is some small probability

for a non-adiabatic transition, so called Landau-Zener

transition [11], that would leave the particle in #0.

There is a well known formula, that allows to calculate

the probability of such transition:

PLZ = exp

»

−2π
c2

u̇

–

(11)

Consequently the probability to find the particle in the

right side at the end of the process is

p = 1 − PLZ (12)

Note that it becomes 100% in the strict adiabatic limit.

4. Quantum-classical correspondence

For a single path transition we can prove that the

first two moments of Q should be in agreement with

the classical expectation. This is based on the relation

between the occupation operator N (whose eigenval-

ues are 0 and 1), and the counting operator Q (whose

eigenvalues do not have a classical interpretation). The

relation is implied by the Heisenberg picture equation

of motion:

d

dt
N (t) = I(t) (13)

Integrating over time we get

N (t) −N (0) = Q (14)

Assuming that the particle is initially prepared in the

left site we get for the k = 1, 2 moments of Q

〈Qk〉 =
D

(N (t) −N (0))k
E

= 〈N k〉t = p (15)

It is important to realize that the derivation cannot

be extended to the k > 2 moments because N (t) does

not commute with N (0). In fact it is not difficult to

calculate the higher moments: one just has to realize

that from Eq.(9) it follows that Q2 = p1, and conse-

quently the even moments are pk/2, while the odd mo-

ments are p(k+1)/2. Optionally this result can be ob-

tained from Eq.(10) as in [9].

In the single path transition problem we say that

we have restricted quantum-classical correspondence.

The first two moments come out the same as in the

classical calculation. Encouraged by this observation

let us speculate what should be the results in more

complicated circumstances that involve multiple path

geometries...

Let us consider our 3 site system (Fig.1). We would

like to analyze the first half of the cycle which is de-

scribed by Fig.2. The particle is initially prepared in

the left site. We gradually raise u so as to have an adi-

abatic transfer of the particle to the right side. The oc-

cupation probability of the right side at the end of the

process is denoted by p. But now we have to remember

that the particle could get there either via the 0 7→ 1

bond or via the 0 7→ 2 bond. Motivated by a stochas-

tic point of view one may argue that the process is like

partitioning of a current, and therefore

〈Q〉 = λp (16)

Var(Q) = (1 − λp)λp [stochastic] (17)

where the splitting ratio is

λ =
|c1|2

|c1|2 + |c2|2
[stochastic] (18)

If for example we have a strict adiabatic process with

p = 1 and the splitting ratio is λ = 1/2, then the

stochastic expectation is to have Var(Q) = (1/2)2. Fur-

thermore, considering a multi-cycle stirring process,
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one may argue that the variance should be accumu-

lated in a stochastic manner:

Var(Q) ∝ time [stochastic] (19)

All the results above that are labeled as ‘stochastic’

might apply in the case of a non-coherent processes,

or in the case of open geometries with leads attached

to equilibrated reservoirs. Below we are going to show

that the above ‘stochastic’ results do not apply to the

analysis of coherent transport in multiple path closed

geometries.

5. Double path adiabatic crossing

For c1 = c2 = 0 the 3 site Hamiltonian of Eq.(1) is

diagonal in the |E0〉, |E−〉, |E+〉 basis. If we limit our-

selves to processes which involve adiabatic crossings of

|E0〉 and |E+〉, as in Fig.2, then transitions to |E−〉 can

be neglected and we can work with a 2×2 Hamiltonian

in the |E0〉 and |E+〉 representation

H =

0

B

@

u(t) c

c 1

1

C

A
(20)

where c = (c1+c2)/
√

2. In the same representation the

current operator of Eq.(2) takes the form

I = λ

0

B

@

0 ic

−ic 0

1

C

A
(21)

where the splitting ratio is

λ =
c1

c1 + c2
(22)

which should be contrasted with the stochastic expres-

sion Eq.(18). If we had λ = 1 it would be the same

problem as single path crossing. The multiple path ge-

ometry is reflected in having I 7→ λI and consequently

Q 7→ λQ. It follows that

〈Q〉 = λp (23)

Var(Q) = λ2(1 − p)p (24)

The latter expression for the variance should be con-

trasted with the stochastic expression Eq.(17). We now

turn to discuss two surprises that are associated with

the above results.

The first surprise comes out from Eq.(22): it is the

possibility to have λ outside of the range [0, 1]. This

happens if c1 and c2 are opposite in sign and close in

absolute value. So we can cook a cycle such that the

splitting is into 700% in one path and −600% in the

other. What does it mean? After some reflection one

realizes that a proper way to describe the dynamics is

to say that the driving u̇ induces a circulating current

in the system. Using a classical-like phrasing one may

argue that during the transition the particle can encir-

cle the ring 6 times before it makes the final crossing

to the right side.

The second surprise comes out from Eq.(24): it is

the way in which λ appears in the variance calculation.

Consider for example a strict adiabatic process with

p = 1. If say λ = 1/2 we do not get Var(Q) = (1/2)2

but rather Var(Q) = 0. One may say that we do not

have an incoherent partitioning of the current, but

rather a noiseless exact splitting of the wavepacket.

This should be contrasted with the common picture of

getting shot noise due to partition of current in open

geometries.

6. Quantum stirring

We can use the results that have been obtained in

previous sections in order to calculate Q for the full

stirring cycle which is described in Fig.2. For this pur-

pose we regard the full stirring cycle as a sequence of

two Landau Zener crossings, where the first is char-

acterized by a splitting ratio λ	 while the second is

characterized by a different splitting ratio λ� . The net

effect is

〈Q〉 = λ	 − λ� + O (PLZ) (25)

An optional way to derive this result is to make a full

3 level calculation using the Kubo formula [8]. Here we

have bypassed the long derivation by making a reduc-

tion to a multiple path crossing problem. The naive ex-

pectation is to have |Q| < 1 if the valves are leaky. But

by playing with the splitting ratio we can get |Q| ≫ 1

per cycle. In the language of the Kubo formalism [8,6]

this happens if the pumping cycle encloses a degener-

5



acy. A large Q reflects a huge circulating current which

is induced by the driving.

We can regard the stirring as an induced persistent

current. Having figured out what is 〈Q〉, the next chal-

lenge in line is to calculate the variance Var(Q). For

this purpose we regard the full stirring cycle as a se-

quence of two Landau Zener crossings. The one period

evolution operator can be written as

U(cycle) =
h

T U�

LZ T
i

e−iϕ
h

U	

LZ

i

(26)

We now explain the ingredients of this expression.

The adiabatic approximation for the ULZ of a single

Landau-Zener crossing is well known (see e.g. [12]):

ULZ ≈

0

B

@

√
PLZ −

√
1−PLZ

√
1−PLZ

√
PLZ

1

C

A
(27)

In the strict adiabatic limit PLZ = 0 and we denote

the respective matrix by U
(0)
LZ . In the first and second

crossings PLZ might be different and accordingly we

use the notations U	

LZ and U�

LZ. The diagonal matrix

ϕ = diag{ϕ+, ϕ−} contains the dynamical phases that

are accumulated in the upper and lower levels during

the time between the two crossings, and we use the

notation ϕ̃ for the phase difference. The transposition

operator T is required because in the second half of

the cycle the roles of the lower and the upper states

are interchanged. The expression for the total Landau-

Zener transition probability is an interference of the

two possible ways to get to the upper level, either by

making the transition in the first crossing or in the

second crossing:

p ≈
˛

˛

˛

q

P	

LZ − eiϕ̃
q

P�

LZ

˛

˛

˛

2

(28)

Physically p is the probability not to come back to the

initial site. The strict adiabatic limit is p = 0.

We turn now to calculate Q in leading order for

PLZ ≪ 1. The operator Q	

LZ is obtained by integrating

over I(t) = U(t)†IU(t) with U(t) = U	

LZ(t). But in the

second half of the cycle U(t) is given by Eq.(26), with

U�

LZ replaced by U�

LZ(t). Consequently we get

Z

I(t)dt ≈ Q	

LZ − [T e−iϕU	

LZ]† Q�

LZ [T e−iϕU	

LZ]

The first term in this expression is Eq.(9) multiplied

by λ	 , with the p of Eq.(12), and with φ = −π/2 cor-

responding to the phase convention in Eq.(27). Then

the second term in this expression becomes

λ�

0

B

@

−(1 − δp) iδq

−iδq +(1 − δp)

1

C

A
(29)

where

δp = +2P	

LZ + P�

LZ − 2
q

P	

LZP
�

LZ cos(ϕ̃) (30)

δq = −2
q

P	

LZ +
q

P�

LZ exp(iϕ̃) (31)

It is easily verified that for λ = 1 we have indeed

an agreement with the restricted quantum-classical

correspondence relation of Eq.(15) where p is given

by Eq.(28). For λ 6= 1 the result for the expecta-

tion value 〈Q〉 is in agreement with Eq.(25). For the

variance we get

Var(Q) ≈
˛

˛

˛λ̃	

q

P	

LZ + eiϕ̃λ�

q

P�

LZ

˛

˛

˛

2

(32)

where λ̃	 = λ	 − 2λ� . This is a generalization of a re-

sult that we had obtained using an adiabatic formalism

in a previous publication [10]. The appearance of λ̃	

instead of λ	 reflects the definite site preparation at

t = 0, and therefore it did not emerge in the adiabatic

calculation where t = 0 has no special meaning. Notice

that the adiabatic approximation with λ̃	 = λ	 is for-

mally obtained by replacing ULZ with U
(0)
LZ .

One should realize that the interference expresses it-

self differently in the expressions for p and for Var(Q).

One may re-phrase this observation by saying that for

a 3-site ring geometry, unlike the case of a 2-site geom-

etry, there is no trivial relation between the counting

statistics and the occupation statistics.

7. Long time statistics of induced currents

In this section we would like to consider the long time

behavior of the counting statistics for either non-driven

or periodically driven systems. In the latter context

it is convenient to define U ≡ U(T ) as the one-period

(Floque) evolution operator, andQ ≡ Q(T ) as the one-

period counting operator, where T = 1 is the period.

The interest is in the counting statistics after t periods.

Accordingly Eq.(3) takes the form

6



Q(t) =

Z t

0

I(t′)dt′ = Q + U−1QU + · · · + U−tQU t

It should be clear that in this latter discrete version the

operator Q (which is like flow per period), plays the

same role as the operator I (flow per unit time). For

this reason we are not going to duplicate the discussion

below, and stick to continuous time notations. Having

defined I as the current trough a specified bond (or

more generally it would be replaced by the flow per-

period), we can decompose it into a ”DC” part and

oscillatory part as follows:

I(t) =
X

n,m

|n〉ei(En−Em)tInm〈m| ≡ Ī + δI(t) (33)

where

Ī ≡
X

En=Em

|n〉Inm〈m| (34)

In the absence of magnetic fields the stationary state

of non-driven system is characterized by zero ”DC”

current and we get Ī = 0, unless the Hamiltonian has

a degeneracy. For a periodically driven systems n are

defined as the eigenstates of the Floque operator and

in general we have Ī 6= 0. Accordingly

Q(t) = tĪ +
X

En 6=Em

|n〉
»

i
1 − ei(En−Em)t

En−Em

–

Inm 〈m|

The non-zero elements of the oscillatory term are all

off-diagonal, while those of Ī may be both diagonal and

non-diagonal. However, without loss of generality we

can choose the n basis such that Ī is diagonal. If the

preparation is a superposition of Floque eigenstates,

then both the average and the dispersion grow linearly.

Accordingly, in general, the asymptotic value of the

relative dispersion
p

Var(Q)/〈Q〉 does not go to zero.

In order to make it go to zero we have to especially

prepare the system in an n eigenstate. For such special

preparation 〈Q(t)〉 grows linearly while the dispersion

is oscillating around a constant value:

Var(Q) =
X

m

2|Inm|2
(En −Em)2

[1 − cos((En−Em)t)]

= Var(Q) + oscillations (35)

The time averaged value of the dispersion Var(Q) is

given above by the first term (without the cosine). The

time averaged value is not always of physical interest.

If only two levels are involved, then Var(Q) drops to

zero periodically. This applies also if several levels are

involved, as long as their spacing differences are not

resolved. The example in the following section demon-

strates these considerations.

8. Example for long time counting statistics

The simplest way to illustrate the discussion of the

previous section is to consider the counting statistics

which is associated with the persistent current in a

clean ring. For simplicity we consider N site ring.

The position eigenstates are labeled as x = 0, 1, 2, ...,

while the momentum eigenstates are labeled as

p = kn = (2π/N)n with n = 0,±1,±2, .... The Hamil-

tonian is

H = −cD − cD−1 = −2c cos(p) (36)

where D = exp(−ip) is the one site displacement

operator, and c is the hopping amplitude. The eigen-

energies are En = −2c cos(2πn/N). Thanks to the

n 7→ −n degeneracy of the spectrum the ring can sup-

port a persistent current even in the absence of a mag-

netic field. The velocity operator is a three diagonal

matrix

v = i[H, x] = icD − icD−1 = 2c sin(p) (37)

We measure the current through the 0 7→ 1 bond. Ac-

cordingly

I = −ic
h

|1〉〈0| − |0〉〈1|
i

(38)

We realize that

[I(t)]nm = −ic 1

N

h

eikn − e−ikm

i

ei(En−Em)t (39)

Upon time averaging only the n = m terms survive

and they equal −i(1/N)2c sin(kn). Thus we have the

identification

Ī =
1

N
v (40)

If the energies were equally spaced with some level spac-

ing ∆ = (2π/N)vF, the motion of the particle would

be strictly periodic. The period of the motion 2π/∆

would be the time to make one round along the ring. In

such case one easily realizes that the variance Var(Q)

7



becomes zero at the end of each period. But if one

takes the true dispersion into account, one realizes that

this periodicity is not strict: after some time the quasi-

periodic (rather than periodic) nature of the motion is

exposed. The long time average of the fluctuating vari-

ance can be calculated using Eq.(35), leading to:

Var(Q) =

N
X

m6=±n

2|Inm|2
(En−Em)2

≈ 1

π2

∞
X

ν=1

1

ν2
=

1

6
(41)

Thus, even if a particle is prepared in a definite station-

ary velocity eigenstate, still the counting at the end of a

period does not yield a certain result. This uncertainty

is related to the non-linearity of the spectrum.

9. Counting, spreading, and dissipation

The analysis of the long time behavior of the count-

ing statistics along the lines of the previous section is

not very illuminating once we turn to consider driven

systems of greater complexity. Technically this is be-

cause the quasi-energies, unlike En become dense in

the [0, 2π] interval. It is therefore more illuminating to

observe that in the latter case the theory of counting

is strongly related to the theory of spreading in real or

in energy space.

Let us assume that we have a ring, and that the

current is measured through a section x. [In the tight

binding model we can associate a location xi with each

site, and Eq.(38) is an example for an expression for

the current through a section at x0 < x < x1]. For a

ring of length L it is convenient to re-define the current

operator as:

I :=
1

L

Z L

0

dxI =
1

L
v (42)

which is essentially the velocity operator. Thus we get a

relation between the counting operator and the spread-

ing in real space

Q(t) =
1

L
(x(t) − x(0)) (43)

where x(t) is the non-periodic extension of the position

operator. This procedure is nice but it should be clear

that the re-definition of the current operator implies

that possibly important information is lost.

More generally we can define an “associated” phys-

ical problem as follows. Assume that the particles are

charged (for simplicity we set e = 1), and the current

is driven by an electro-motive-force (EMF) which is in-

duced by a vector potential

A(x, t) = Φ(t) δ(x− x0) (44)

Then the rate of energy absorption is proportional to

the current and to the EMF (−Φ̇)

dH
dt

=
∂H
∂t

=
∂H
∂Φ

Φ̇ = −Φ̇ × I (45)

Thus the transported charge Q implies energy absorp-

tion

Qabsorption ≡ (H(t)−H(0)) = −Φ̇ ×Q (46)

The energy absorption can be either positive or nega-

tive, but if the system is chaotic it can be argued that

its dispersion, and hence the average are growing as a

function of time. The same applies to Q. Namely:

Var(Q) =

Z t

0

Z t

0

〈I(t)I(t′)〉dtdt′ (47)

Thus both the counting statistics and the dissipation

reflect the fluctuations of the current (Kubo). This

point of view is quite powerful. Instead of thinking

about “counting statistics” (which is quite abstract)

we can think about “energy absorption” for which we

have better intuition and better theoretical tools for

analysis.

10. Summary

In closed geometries counting statistics does not

obey the common stochastic point of view, but rather

reflects the coherent nature of the quantum transport.

For a single path crossing in a 2 site system the first

and second moments coincide with the naive classi-

cal expectation due to a restricted quantum-classical

correspondence principle that can be established.

But more generally, in multiple path geometries, the

results are not as naively expected.

In a double path geometry the particle has two paths

of transport. The splitting ratio λwould be in the range

[0, 1] if the particle were classical. But in the case of co-

herent transport λ can be any number (either negative

8



or positive). We have explained what is the correct way

to incorporate the splitting ratio λ in the calculation

of the counting statistics.

During a double path crossing the probability ampli-

tude of the particle is transported simultaneously via

the two available paths. The coherent splitting is “ex-

act”, and consequently Q has zero variance. If the par-

ticle had finite probabilities to go either via the first

path or via the second path, it would imply a non-zero

variance (which is not the case).

Possibly the most interesting result is the analysis

of a full stirring cycle where the counting statistics

becomes unrelated to the changes in the occupation

statistics. In particular we showed that the interference

of sequential Landau-Zener crossings is reflected differ-

ently in the respective expressions for VarQ and for p.

The RMS of the fluctuations of Q in a coherent stir-

ring process grows like ∝ t and not like ∝
√
t. This

linear increase can be avoided, or at least minimized,

if there is control over the preparation of the system.

Then we are left with a constant residual dispersion.

For a driven system the counting statistics is related to

the study of spreading and dissipation in energy space,

and hence the growth of the variance constitutes a re-

flection of linear response characteristics.
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