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Abstract

We introduce and analyze the physics of ‘‘driving reversal’’ experiments. These are prototype
wavepacket dynamics scenarios probing quantum irreversibility. Unlike the mostly hypothetical
‘‘time reversal’’ concept, a ‘‘driving reversal’’ scenario can be realized in a laboratory experiment,
and is relevant to the theory of quantum dissipation. We study both the energy spreading and the
survival probability in such experiments. We also introduce and study the ‘‘compensation time’’
(time of maximum return) in such a scenario. Extensive effort is devoted to figuring out the capability
of either linear response theory or random matrix theory (RMT) to describe specific features of the
time evolution. We explain that RMT modeling leads to a strong non-perturbative response effect
that differs from the semiclassical behavior.
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1. Introduction

In recent years there has been an increasing interest in understanding the theory of driv-
en quantized chaotic systems [1–11]. Driven systems are described by a Hamiltonian
HðQ; P ; xðtÞÞ, where x (t) is a time-dependent parameter and (Q,P) are some generalized
actions. Due to the time dependence of x (t), the energy of the system is not a constant
of motion. Rather the system makes ‘‘transitions’’ between energy levels, and therefore
absorbs energy. This irreversible loss of energy is known as dissipation. To have a clear
understanding of quantum dissipation we need a theory for the time evolution of the ener-
gy distribution.

Unfortunately, our understanding on quantum dynamics of chaotic systems is still quite
limited. The majority of the existing quantum chaos literature concentrates on understand-
ing the properties of eigenfunctions and eigenvalues. One of the main outcomes of these
studies is the conjecture that random matrix theory (RMT) modeling, initiated half a cen-
tury ago by Wigner [12,13], can capture the universal aspects of quantum chaotic systems
[14,15]. Due to its large success RMT has become a major theoretical tool in quantum cha-
os studies [14,15], and it has found applications in both nuclear and mesoscopic physics
(for a recent review see [16]). However, its applicability to quantum dynamics was left
unexplored [17,18].

This paper extends our previous reports [10,17,18] on quantum dynamics, both in detail
and depth. Specifically, we analyze two dynamical schemes: the first is the so-called wave-
packet dynamics associated with a rectangular pulse of strength +� which is turned on for
a specified duration. The second involves an additional pulse followed by the first one
which has a strength �� and is of equal duration. We define this latter scheme as driving

reversal scenario. We illuminate the direct relevance of our study with the studies of quan-
tum irreversibility of energy spreading [10] and consequently with quantum dissipation.
We investigate the conditions under which maximum compensation is succeeded and
define the notion of compensation (echo) time. To this end we rely both on numerical cal-
culations performed for a chaotic system and on analytical considerations based on linear
response theory (LRT). The latter constitutes the leading theoretical framework for the
analysis of driven systems and our study aims to clarify the limitations of LRT due to cha-
os. Our results are always compared with the outcomes of RMT modeling. We find that
the RMT approach fails in general, to give the correct picture of wave-evolution. RMT
can be trusted only to the extend that it gives trivial results that are implied by perturba-
tion theory. Non-perturbative effects are sensitive to the underlying classical dynamics,
and therefore the �h fi 0 behavior for effective RMT models is strikingly different from
the correct semiclassical limit.

The structure of this paper is as follows: in the next section, we discuss the notion of
irreversibility which is related to driving reversal schemes and distinguish it from micro-re-
versibility which is associated with time reversal experiments. In Section 3 we discuss the
driving schemes that we are using and we introduce the various observables that we will
study in the rest of the paper. In Section 4, the model systems are introduced and an anal-
ysis of the statistical properties of the eigenvalues and the Hamiltonian matrix is present-
ed. The random matrix theory modeling is presented in Subsection 4.4. In Section 5 we
introduce the concept of parametric regimes and exhibit its applicability in the analysis
of parametric evolution of eigenstates [19]. Section 6 extends the notion of regimes in
dynamics and presents the results of linear response theory for the variance and the
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survival probability. The linear response theory (LRT) for the variance is analyzed in
details in the following Subsection 6.1. In this subsection, we also introduce the notion
of restricted quantum-classical correspondence (QCC) and show that, as far as the second
moment of the evolving wavepacket is concerned, both classical and quantum mechanical
LRT coincide. In Section 6.5 we present in detail the results of LRT for the survival prob-
ability for the two driving schemes that we analyze. The following Sections 7 and 8 contain
the results of our numerical analysis together with a critical comparison with the theoret-
ical predictions obtained via LRT. Specifically in Section 7, we present an analysis of
wavepacket dynamics [18] and expose the weakness of RMT strategy to describe wavepac-
ket dynamics. In Section 8 we study the evolution in the second half of the driving period
and analyze the Quantum Irreversibility in energy spreading, where strong non-perturba-
tive features are found for RMT models [10]. Section 9 summarizes our findings.

2. Reversibility

The dynamics of either a classical or a quantum mechanical system is generated by a
Hamiltonian HðQ; P ; xðtÞÞ, where x = (X1,X2,X3, . . .) is a set of parameters that can be
controlled from the ‘‘outside.’’ In principle, x stands for the infinite set of parameters that
describe the electric and magnetic fields acting on the system. But in practice the experi-
mentalist can control only few parameters. A prototype example is a gas of particles inside
a container with a piston. Then X1 may be the position of the piston, X2 may be some
imposed electric field, and X3 may be some imposed magnetic field. Another example is
electrons in a quantum dot where some of the parameters X represent gate voltages.

What do we mean by reversibility? Let us assume that the system evolves for some time.
The evolution is described by

U ½x� ¼ exp � i

�h

Z t

0

Hðxðt0ÞÞdt0
� �

; ð1Þ

where Exp stands for time ordered exponentiation. In the case of the archetype example of
a container with gas particles, we assume that there is a piston (position X) that is trans-
lated outwards (XA (t) increasing). Then we would ‘‘undo’’ the evolution, by displacing the
piston ‘‘inwards’’ (XB (t) decreasing). In such a case the complete evolution is described by
U[x] = U[xB]U[xA]. If we get U = 1 (up to a phase factor), then it means that it is possible
to bring the system back to its original state. In this case, we say that the process U[x] is
reversible.

In the strict adiabatic limit the above described process is indeed reversible. What about
the non-adiabatic case? To have a well posed question we would like to distinguish below
between ‘‘time reversal’’ and ‘‘driving reversal’’ schemes.

2.1. Time reversal scheme

Obviously, we are allowed to invent very complicated schemes to ‘‘undo’’ the evolution.
The ultimate scheme (in the case of the above example) involves reversal of the velocities.
Assume that this operation is represented by UT, then the reverse evolution is described
by

U reverse ¼ U T U ½xB�U T ; ð2Þ
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where in xB (t) we have the time reversed piston displacement (X (t)) together with the sign
of the magnetic field (if it exists) should be inverted. The question is whether UT can be
realized. If we postulate that any unitary or anti-unitary transformation can be realized,
then it follows trivially that any unitary evolution is ‘‘micro-reversible.’’ But when we talk
about reversibility (rather than micro-reversibility) we allow control over a restricted set of
parameters (fields). Then the question is whether we can find a driving scheme, named xT,
such that

U T ¼ U ½xT � ??? ð3Þ
With such restriction it is clear that in general the evolution is not reversible.

Recently, it has been demonstrated in an actual experiment that the evolution of a spin
system (cluster with many interacting spins) can be reversed. Namely, the complete evolu-
tion was described by U[x] = U[xT]U[xA]U[xT]U[xA], where U[xA] is generated by some
Hamiltonian HA ¼ H0 þ eW. The term H0 represents the interaction between the spins,
while the term W represents some extra interactions. The unitary operation U[xT] is real-
ized using NMR techniques, and its effect is to invert the signs of all the couplings. Name-
ly, U ½xT �H0U ½xT � ¼ �H0. Hence, the reversed evolution is described by

U reverse ¼ exp � i

�h
tð�H0 þ eWÞ

� �
; ð4Þ

which is the so-called Loschmidt Echo scenario. In principle, we would like to have e = 0
so as to get U = 1, but in practice we have some un-controlled residual fields that influence
the system, and therefore e „ 0. There is a huge amount of literature that discusses what
happens in such scenario [20–24].

2.2. Driving reversal scheme

The above described experiment is in fact exceptional. In most cases it is possible to
invert the sign of only one part of the Hamiltonian, which is associated with the driv-
ing field. Namely, if for instance U[xA] is generated by HA ¼ H 0 þ eW, then we can
realize

U reverse ¼ exp � i

�h
tðH0 � eWÞ

� �
; ð5Þ

whereas Eq. (4) cannot be realized in general. We call such a typical scenario ‘‘driving
reversal’’ to distinguish it from ‘‘time reversal’’ (Loschmidt Echo) scenario.

The study of ‘‘driving reversal’’ is quite different from the study of ‘‘Loschmidt Echo.’’
A simple minded point of view is that the two problems are formally equivalent because
we simply permute the roles of H0 and W. In fact, there is no symmetry here. The main
part of the Hamiltonian has in general an unbounded spectrum with well defined density
of states, while the perturbation W is assumed to be bounded. This difference completely
changes the ‘‘physics’’ of dynamics.

To conclude the above discussion we would like to emphasize that micro-reversibility is
related to ‘‘time reversal’’ experiments which in general cannot be realized, while the issue
of reversibility is related to ‘‘driving reversal,’’ which in principle can be realized. Our dis-
tinction reflects the simple observation that not any unitary or anti-unitary operation can
be realized.
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3. Object of the study

In this paper, we consider the issue of irreversibility for quantized chaotic systems. We
assume for simplicity one parameter driving. We further assume that the variation of x (t)
is small in the corresponding classical system so that the analysis can be carried out with a
linearized Hamiltonian. Namely,

HðQ; P ; xðtÞÞ � H0 þ dxðtÞW; ð6Þ

where H0 � HðQ; P ; xð0ÞÞ and dx = x (t) � x (0). For latter purposes it is convenient to
write the perturbation as

dxðtÞ ¼ e� f ðtÞ; ð7Þ
where e controls the ‘‘strength of the perturbation,’’ while f (t) is the scaled time depen-
dence. Note that if f (t) is a step function, then e is the ‘‘size’’ of the perturbation, while
if f (t) / t then e is the ‘‘rate’’ of the driving. In the representation of H0 we can write

H ¼ E þ dxðtÞB; ð8Þ
where by convention the diagonal terms of B are absorbed into the diagonal matrix E.
From general considerations that we explain later it follows that B is a banded matrix that
looks random. This motivates the study of an effective banded random matrix (EBRM)
model, as well as its simplified version which is the standard Wigner banded random ma-
trix (WBRM) model (see detailed definitions in the following).

To study the irreversibility for a given driving scenario, we have to introduce measures
that quantify the departure from the initial state. We define a set of such measures in the
following subsections.

3.1. The evolving distribution Pt (n|n0)

Given the Hamiltonian HðQ; P ; xÞ, an initial preparation at state |n0æ, and a driving sce-
nario x (t), it is most natural to analyze the evolution of the probability distribution

P tðnjn0Þ ¼ jhnjUðtÞjn0ij2. ð9Þ
We always assume that x (t) = x (0).

By convention we order the states by their energy. Hence, we can regard Ptðnjn0Þ as a
function of r = n � n0, and average over the initial preparation, so as to get a smooth dis-
tribution PtðrÞ.

The survival probability is defined as

PðtÞ ¼ jhn0jUðtÞjn0ij2 ¼ P tðn0jn0Þ; ð10Þ
and the energy spreading is defined as

dEðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

n

P tðnjn0ÞðEn � En0
Þ2

r
. ð11Þ

These are the major measures for the characterization of the distribution. In later sec-
tions we would like to analyze their time evolution.

The physics of dE (t) is very different from the physics of PðtÞ because the former is very
sensitive to the tails of the distribution. Yet, the actual ‘‘width’’ of the distribution is not
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captured by any of these measures. A proper measure for the width can be defined as
follows:

dEcoreðtÞ ¼ ½n75% � n25%�D; ð12Þ
where D is the mean level spacing and nq is determined through the equationP

nPt (n|n0) = q. Namely, it is the width of the main body of the distribution. Still another
characteristic of the distribution is the participation ratio dnIPR (t). It gives the number of
levels that are occupied at time t by the distribution. The ratio dnIPR/(n75% � n25%) can be
used as a measure for sparsity. We assume in this paper strongly chaotic systems, so spar-
sity is not an issue and dnIPR � dEcore/D.

3.2. The compensation time tr

In this paper, we consider two types of driving schemes. Both driving schemes are pre-
sented schematically in Fig. 1.

The first type of scheme is the wavepacket dynamics scenario for which the driving is
turned-on at time t = 0 and turned-off at a later time t = T.

The second type of scenario that we investigate is what we call driving reversal. In this
scenario the initial rectangular pulse is followed by a compensating pulse of equal dura-
tion. The total period of the cycle is T.

In Fig. 9 we show representative results for the time evolution of dE (t) in a wavepacket
scenario, while in Fig. 12 we show what happens in case of a driving reversal scenario.
Corresponding plots for PðtÞ are presented in Fig. 13. We shall define the models and
we shall discuss the details of these figures later on. At this stage, we would like to motivate
by inspection of these figures the definition of ‘‘compensation time.’’

We define the compensation time tr, as the time after the driving reversal, when maxi-
mum compensation (maximum return) is observed. If it is determined by the maximum of
the survival probability kernel PðtÞ, then we denote it as tP

r . If it is determined by the min-
imum of the energy spreading dE (t) then we denote it as tE

r . It should be remembered that
the theory of PðtÞ and dE (t) is not the same, hence the distinction in the notation. The time
of maximum compensation is in general not tr = T but rather

T =2 < tr < T . ð13Þ
We emphasize this point because the notion of ‘‘echo,’’ as used in the literature, seems to
reflect a false assertion [24].
f(t) f(t)

t0t0 T T

Fig. 1. Shape of the applied driving schemes f (t); wavepacket dynamics (left panel) and driving reversal scenario
(right panel).
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For the convenience of the reader we concentrate in the following table on the major
notations in this paper:
Notation
 Explanation
 Reference
HðQ; P ; xðtÞÞ
 Classical linearized Hamiltonian
 Eq. (6)

FðtÞ
 Generalized force
 Eq. (17)

C(s)
 Correlation function
 Eq. (18)

scl
 Correlation time
 —

~CðxÞ
 Fluctuation spectrum
 Eq. (19)
H ¼ E þ dxB
 The Hamiltonian matrix
 Eq. (8)

2DW
 The physical model system
 Eq. (14)

EBRM
 The corresponding RMT model
 —

WBRM
 The Wigner RMT model
 —
D
 Mean level spacing
 Eq. (23)

Db
 Energy bandwidth
 Eq. (24)

r
 RMS of near diagonal couplings
 —

Pspacings(s)
 Energy spacing distribution
 Eq. (16)

Pcouplings(q)
 Distribution of couplings
 Eq. (25)
En (x)
 Eigenenergies of the Hamiltonian
 —

En � Em � rD
 Estimated energy difference for

r = n � m
—

P (n|m)
 Overlaps of eigenstates given a constant
perturbation e
Eq. (27)
P (r)
 Smoothed version of P (n|m)
 —

C (dx)
 The number of levels that are mixed

non-perturbatively

—

dEcl / dx
 The classical width of the LDoS
 Eq. (29)
dx = ef (t)
 Driving scheme
 Eq. (7)

T
 The period of the driving cycle (if

applicable)

—

Pt (n|m)
 The transition probability
 Eq. (9)

Pt (r)
 Smoothed version of Pt (n|n0)
 —

PðtÞ
 The survival probability Pt (n0|n0)
 Eq. (10)

pðtÞ ¼ 1� PðtÞ
 Total transition probability
 Eq. (47)

dE (t)
 Energy spreading
 Eq. (11)

dEcore (t)
 The ‘‘core’’ width of the distribution
 Eq. (12)
P
tr
 Compensation time for the survival
probability
—

tE
r
 Compensation time for the energy

spreading

—

tprt, tsdn, terg
 Various time scales in the dynamics
 Eqs. (59), (62), (70)

ec, eprt
 Borders between regimes
 Eqs. (31), (33)

PFOPT,Pprt,Psc
 Various approximations to P()
 Eqs. (30), (32), (34), (35)
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4. Modeling

We are interested in quantized chaotic systems that have few degrees of freedom.
The dynamical system used in our studies is the Pullen–Edmonds model [25,26]. It
consists of two harmonic oscillators that are non-linearly coupled. The corresponding
Hamiltonian is

HðQ; P ; xÞ ¼ 1
2
ðP 2

1 þ P 2
2 þ Q2

1 þ Q2
2Þ þ xQ2

1Q2
2. ð14Þ

The mass and the frequency of the harmonic oscillators are set to one. Without loss of
generality we set x (0) = x0 = 1. Later, we shall consider classically small deformations
(dx� 1) of the potential. One can regard this model (14) as a description of a particle
moving in a two dimensional well (2DW). The energy E is the only dimensionless param-
eter of the classical motion. For high energies E > 5 the motion of the Pullen–Edmonds
model is ergodic. Specifically, it was found that the measure of the chaotic component
on the Poincaré section deviates from unity by no more than 10�3 [25,26].

In Fig. 2, we display the equipotential contours of the model Hamiltonian (14) with
x0 = 1. We observe that the equipotential surfaces are circles but as the energy is increased
they become more and more deformed leading to chaotic motion. Our analysis is focused
on an energy window around E � 3 where the motion is mainly chaotic. This is illustrated
in the right panel of Fig. 2 where we report the Poincaré section (of the phase space) of a
selected trajectory, obtained from H0 at E = 3. The ergodicity of the motion is illustrated
by the Poincaré section, filling the plane except from some tiny quasi-integrable islands.

The perturbation is described by W ¼ Q2
1Q2

2. In the classical analysis there is only one
significant regime for the strength of the perturbation. Namely, the perturbation is consid-
ered to be classically small if

dx� ecl; ð15Þ
where ecl = 1. This is the regime where (classical) linear analysis applies. Namely, within
this regime the deformation of the energy surface H0 ¼ E can be described as a linear pro-
cess [see Eq. (29)].
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Fig. 2. Equipotential contours (left) of the model Hamiltonian H0 for different energies and the Poincaré section
(right) of a selected trajectory at E = 3. Some tiny quasi-integrable islands are avoided (mainly at (0,0)).



M. Hiller et al. / Annals of Physics 321 (2006) 1025–1062 1033
4.1. Energy levels

Let us now quantize the system. For obvious reasons we are considering a de-symme-
trized 1/8 well with Dirichlet boundary conditions on the lines Q1 = 0, Q2 = 0 and
Q1 = Q2. The matrix representation of H0 in the basis of the un-coupled system is very
simple. The eigenstates of the Hamiltonian H0 are then obtained numerically.

As mentioned above, we consider the experiments to take place in an energy window
2.8 < E < 3.1 which is classically small and where the motion is predominantly chaotic.
Nevertheless, quantum mechanically, this energy window is large, i.e., many levels are
found therein. The local mean level spacing D (E) at this energy range is given approxi-
mately by D � 4.3�h2. The smallest �h that we can handle is �h = 0.012 resulting in a matrix
size of about 4000 · 4000. Unless stated otherwise, all the numerical data presented below
correspond to a quantization with �h = 0.012.

As it was previously mentioned in the introduction, the main focus of quantum chaos
studies has so far been on issues of spectral statistics [14,15]. In this context it turns out
that the sub��h statistical features of the energy spectrum are ‘‘universal,’’ and obey the
predictions of RMT. In particular, we expect that the level spacing distribution P (s) of
the ‘‘unfolded’’ (with respect to D) level spacings sn = (En + 1 � En)/D will follow with high
accuracy the so-called Wigner surmise. For systems with time reversal symmetry it takes
the form [14,27]

P spacingsðsÞ ¼
p
2

se�
p
4s2 ð16Þ

indicating that there is a linear repulsion between nearby levels. Non-universal (i.e., system
specific) features are reflected only in the large scale properties of the spectrum and con-
stitute the fingerprints of the underlying classical chaotic dynamics.

The de-symmetrized 2DW model shows time reversal symmetry, and therefore we
expect the distribution to follow Eq. (16). The analysis is carried out only for the levels
contained in the chosen energy window around E = 3. Instead of plotting P (s) we show
the integrated distribution IðsÞ ¼

R s
0

P ðs0Þds0, which is independent of the bin size of the
histogram. In Fig. 3 we present our numerical data for I(s) while the inset shows the devi-
ations from the theoretical prediction (16). The agreement with the theory is fairly good
and the level repulsion is clearly observed. The observed deviations have to be related
on the one hand to the tiny quasi-integrable islands that exist at E = 3 as well as to rather
limited level statistics.

4.2. The band-profile

In this subsection, we explain that the band-structure of B is related to the fluctuations
of the classical motion. This is the major step towards RMT modeling.

Consider a given ergodic trajectory (Q(t), P (t)) on the energy surface
HðQð0Þ; Pð0Þ; x0Þ ¼ E. An example is shown in the right panel of Fig. 2. We can associate
with it a stochastic-like variable

FðtÞ ¼ � oH

ox
ðQðtÞ; P ðtÞ; xðtÞÞ; ð17Þ

which for our linearized Hamiltonian is simply the perturbation term F ¼ �W ¼ �Q2
1Q2

2.
It can be interpreted as the generalized force that acts on the boundary of the 2D well. It
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may have a non-zero average (‘‘conservative’’ part) but below we are interested only in its
fluctuations.

To characterize the fluctuations of FðtÞ we introduce the autocorrelation function C (s)

CðsÞ ¼ hFðtÞFðt þ sÞi � hF 2i. ð18Þ
The angular brackets denote an averaging which is either micro-canonical over some ini-
tial conditions (Q (0), P (0)) or temporal (due to the assumed ergodicity). The power spec-
trum for the 2D well model is shown in Fig. 4 (see solid line).

For generic chaotic systems (described by smooth Hamiltonians), the fluctuations are
characterized by a short correlation time scl, after which the correlations are negligible.
In generic circumstances scl is essentially the ergodic time. For our model system scl � 1.
-10 -5 0 5 10
0

0.2

0.4

0.6

0.8

ω
cl

Fig. 4. The classical power-spectrum of the model (14). The classical cut-off frequency xcl . 7 is indicated by
perpendicular dashed lines.
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The power spectrum of the fluctuations ~CðxÞ is defined by a Fourier transform:

~CðxÞ ¼
Z 1

�1
CðsÞ expðixsÞds. ð19Þ

This power spectrum is characterized by a cut-off frequency xcl which is inversely propor-
tional to the classical correlation time

xcl ¼
2p
scl

. ð20Þ

Indeed in the case of our model system we get xcl � 7 which is in agreement with Fig. 4.
The implication of having a short but non-vanishing classical correlation time scl is

having large but finite bandwidth in the perturbation matrix B. This follows from the
identity

~CðxÞ ¼
X

n

jBnmj22pd x� En � Em

�h

� �
; ð21Þ

which implies [28]

hjBnmj2i ¼
D

2p�h
~C x ¼ En � Em

�h

� �
. ð22Þ

Hence, the matrix elements of the perturbation matrix B are extremely small outside of a
band of width b = �hxcl/D.

In the inset of Fig. 5, we show a snapshot of the perturbation matrix |Bnm|2. It clearly
shows a band-structure. At the same figure, we also display the band-profiles for different
values of �h. A good agreement with the classical power spectrum ~CðxÞ is evident.

It is important to realize that upon quantization we end up with two distinct energy
scales. One is obviously the mean level spacing (see previous subsection)

D / �hd ; ð23Þ
where the dimensionality is d = 2 in case of our model system. The other energy scale is the
bandwidth
–8 –6 –4 –2 0 2 4 6 8
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Fig. 5. The band-profile (2p�h/D) Æ |Bnm|2 versus x = (En � Em)/�h is compared with the classical power spectrum
~CðxÞ. Inset: a snapshot of the perturbation matrix B.
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Db ¼
2p�h
scl

¼ bD. ð24Þ

This energy scale is also known in the corresponding literature as the ‘‘non-universal’’
energy scale [29], or (in case of diffusive motion) as the Thouless energy [30].1 One has
to notice that deep in the semiclassical limit �h fi 0 these two energy scales differ enormous-
ly from one another (provided d P 2). We shall see in the following sections that this scale
separation has dramatic consequences in the theory of driven quantum systems.

4.3. Distribution of couplings

We investigate further the statistical properties of the matrix elements Bnm of the per-
turbation matrix, by studying their distribution. RMT assumes that upon appropriate
unfolding they must be distributed in a Gaussian manner. The ‘unfolding’ aims to remove
system specific properties and reveal the underlying universality. It is done by normalizing

the matrix elements with the local standard deviation r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjBnmj2i

q
related through Eq.

(22) with the classical power spectrum ~CðxÞ.
The existing literature is not conclusive about the distribution of the normalized matrix

elements q = Bnm/r. Specifically, Berry [31] and more recently Prosen [32,33], claimed that
PðqÞ should be Gaussian. On the other hand, Austin and Wilkinson [34] have found that
the Gaussian is approached only in the limit of high quantum numbers while for small
numbers, i.e., low energies, a different distribution applies, namely

P couplingsðqÞ ¼
CðN

2
Þffiffiffiffiffiffiffi

pN
p

CðN�1
2
Þ

1� q2

N

� �ðN�3Þ=2

. ð25Þ

This is the distribution of the elements of an N-dimensional vector, distributed randomly
over the surface of an N-dimensional sphere of radius

ffiffiffiffi
N
p

. For N fi1 this distribution
approaches a Gaussian.

The distribution PðqÞ for our model is reported in Fig. 6. The solid line corresponds to
a Gaussian of unit variance while the dashed-dotted line is obtained by fitting Eq. (25) to
the numerical data using N as a fitting parameter. We observe that the Gaussian resembles
better our numerical data although deviations, especially for matrix elements close to zero,
can be clearly seen. We attribute these deviations to the existence of the tiny stability
islands in the phase space. Trajectories started in those islands cannot reach the chaotic
sea and vice versa. Quantum mechanically the consequence of this would be vanishing
matrix elements Bnm which represent the classically forbidden transitions.

4.4. RMT modeling

It was the idea of Wigner [12,13] more than 40 years ago, to study a simplified model,
where the Hamiltonian is given by Eq. (8), and where B is a Banded Random Matrix
(BRM) [35–37]. The diagonal matrix E has elements which are the ordered energies
{En}, with mean level spacing D. The perturbation matrix B has a rectangular band-profile
1 The dimensionless parameter b scales like b / �h�(d�1) and in the frame of mesoscopic systems is recognized as
the dimensionless Thouless conductance [30].



-2 0
q

0

0.1

0.2

0.3

0.4

0.5

P(
q)

2

Fig. 6. Distribution of matrix elements q around E = 3 rescaled with the averaged band-profile. The solid black
line corresponds to a Gaussian distribution with unit variance while the dashed-dotted line corresponds to a fit
from Eq. (25) with a fitting parameter N = 7.8. The quantization corresponds to �h = 0.03.
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of band-size b. Within the band 0 < |n � m| 6 b the elements are independent random vari-
ables given by a Gaussian distribution with zero mean and a variance r2 = Æ|Bnm|2æ. Out-
side the band they vanish. We refer to this model as the Wigner BRM model (WBRM).

Given the band-profile, we can use Eq. (22) in reverse direction to calculate the corre-
lation function C (s). For the WBRM model we get

CðsÞ ¼ 2r2bsincðs=sclÞ; ð26Þ
where scl = �h/Db. Thus, there are three parameters (D,b,r) that define the WBRM model.

The WBRM model can be regarded as a simplified local description of a true Hamilto-
nian matrix. This approach is attractive both analytically and numerically. Analytical cal-
culations are greatly simplified by the assumption that the off-diagonal terms can be
treated as independent random numbers. Also from a numerical point of view it is quite
a tough task to calculate the true matrix elements of the B matrix. It requires a preliminary
step where the chaotic H0 is diagonalized. Due to memory limitations one ends up with
quite small matrices. For the Pullen–Edmonds model we were able to handle matrices
of final size N = 4000 maximum. This should be contrasted with the WBRM simulations,
where using self-expanding algorithm [17,41] we were able to handle system sizes up to
N = 100,000 along with significantly reduced CPU time.

We would like to stress again that the underlying assumption of WBRM, namely that
the off-diagonal elements are uncorrelated random numbers, has to be treated with extreme
care.

The WBRM model involves an additional simplification. Namely, one assumes that B
has a rectangular band-profile. A simple inspection of the band-profile of our model Eq.
(14) shows that this is not the case (see Fig. 5). We eliminate this simplification by intro-
ducing a RMT model that is even closer to the dynamical one. To this end, we randomize
the signs of the off-diagonal elements of the perturbation matrix B keeping its band-struc-
ture intact. This procedure leads to a random model that exhibits only universal properties
while it lacks any semiclassical limit. We will refer to it as the effective banded random
matrix model (EBRM).
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5. The parametric evolution of the eigenfunctions

As we change the parameter dx in the Hamiltonian Eq. (8), the instantaneous eigen-
states {|n (x)æ} evolve and undergo structural changes. To understand the actual dynamics,
it is important to understand these structural changes. This leads to the introduction of

P ðnjmÞ ¼ jhnðxÞjmðx0Þij2; ð27Þ
which is easier to analyze than Pt (n|n0). Up to some trivial scaling and shifting P (n|m) is
essentially the local density of states (LDoS):

P ðEjmÞ ¼
X

n

jhnðxÞjmðx0Þij2dðE � EnÞ. ð28Þ

The averaged distribution P(r) is defined in complete analogy with the definition of Pt (r).
Namely, we use the notation r = n � m, and average over several m states with roughly the
same energy Em � E.

Generically P(r) undergoes the following structural changes as a function of growing
dx. We first summarize the generic picture, which involves the parametric scales ec and eprt.
and the approximations PFOPT, Pprt, and Psc. Then we discuss how to determine these
scales, and what these approximations are.

• The first order perturbative theory (FOPT) regime is defined as the range dx < ec where
we can use FOPT to get an approximation that we denote as P() � PFOPT.

• The (extended) perturbative regime is defined as the range ec < dx < eprt where we can
use perturbation theory (to infinite order) to get a meaningful approximation that we
denote as P() � Pprt. Obviously, Pprt reduces to PFOPT in the FOPT regime.

• The non-perturbative regime is defined as the range dx > eprt where perturbation theory
becomes non-applicable. In this regime, we have to use either RMT or semiclassics to
get an approximation that we denote as P() � Psc.

Irrespective of these structural changes, it can be proved that the variance of P (r) is
strictly linear and given by the expression

dEðdxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
Cð0Þ

p
dx � dEcl. ð29Þ

The only assumption that underlines this statement is dx� ecl. It reflects the linear depar-
ture of the energy surfaces.

5.1. Approximations for P(n|m)

The simplest regime is obviously the FOPT regime where, for P (n|m), we can use the
standard textbook approximation PFOPT (n|m) � 1 for n = m, while

P FOPTðnjmÞ ¼
dx2jBnmj2

ðEn � EmÞ2
ð30Þ

for n „ m. If outside of the band we have Bnm = 0, as in the WBRM model, then
PFOPT(r) = 0 for |r| > b. To find the higher order tails (outside of the band) we have to
go to higher orders in perturbation theory. Obviously, this approximation makes sense
only as long as dx < ec, where
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ec ¼ D=r � �hð1þdÞ=2; ð31Þ
and d is the degrees of freedom of our system (d = 2 for the 2D well model). If dx > ec but
not too large then we still have tail regions which are described by FOPT. This is a non-
trivial observation which can be justified by using perturbation theory to infinite order.
Then we can argue that a reasonable approximation is

P prtðnjmÞ ¼
dx2 jBnmj2

ðEn � EmÞ2 þ C2
; ð32Þ

where C is evaluated by imposing normalization of Pprt(n|m). In the case of WBRM model
C = (rdx/D)2 · D [12]. The appearance of C in the above expression cannot be obtained
from any finite-order perturbation theory: formally it requires summation to infinite order.
Outside of the bandwidth the tails decay faster than exponentially. Note that Pprt(n|m) is a
Lorentzian in the case of a flat bandwidth (WBRM model), while in the general case it can
be described as a ‘‘core-tail’’ structure.

Obviously, the above approximation makes sense only as long as C (dx) < Db. This
expression assumes that the bandwidth Db is sharply defined, as in the WBRM model.
By elimination this leads to the determination of eprt, which in case of the WBRM model
is simply

eprt ¼
ffiffiffi
b
p

ec �
�h

scl

ffiffiffiffiffiffiffiffiffiffi
Cð0Þ

p . ð33Þ

In more general cases the bandwidth is not sharply defined. Then we have to define the
perturbative regime using a practical numerical procedure. The natural definition that
we adopt is as follows. We calculate the spreading dE(dx), which is a linear function. Then
we calculate dEprt(dx), using Eq. (32). This quantity always saturates for large dx because
of having finite bandwidth. We compare it to the exact dE(dx), and define eprt for instance
as the 80% departure point.

What happens if perturbation theory completely fails? In the WBRM model the LDoS
becomes semicircle:

P scðnjmÞ ¼
1

2pD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� En � Em

D

� �2
s

; ð34Þ

while in systems that have a semiclassical limit we expect to get

P scðnjmÞ ¼
Z

dQdP

ð2p�hÞd
qnðQ; P ÞqmðQ; P Þ; ð35Þ

where qm(Q,P) and qn(Q,P) are the Wigner functions that correspond to the eigenstates
|m(x0)æ and |n(x)æ, respectively.

5.2. The P(n|m) in practice

There are some findings that go beyond the above generic picture and, for complete-
ness, we mention them. The first one is the ‘‘localization regime’’ [35,38,39] which is found
in the case of the WBRM model for e > eloc, where

eloc ¼ b3=2ec. ð36Þ
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In this regime it is important to distinguish between the non-averaged P (n|m) and the aver-
aged P (r) because the eigenfunctions are non-ergodic but rather localized. This localiza-
tion is not reflected in the LDoS which is still a semicircle. A typical eigenstate is
exponentially localized within an energy range dEn = nD much smaller than dEcl. The
localization length is n � b2. In actual physical applications it is not clear whether there
is such a type of localization. The above scenario for the WBRM model is summarized
in Fig. 7 where we plot P(n|m) in the various regimes. The localized regime is not an issue
in the present work and therefore we will no further be concerned with it.
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Fig. 7. The parametric evolution of eigenstates of a WBRM model with r = 1 and b = 50: (A) standard
perturbative regime corresponding to e = 0.01, (B) extended perturbative regime with e = 2, (C) non-perturbative
(ergodic) regime with e = 12, and (D) localized regime with e = 1. In (A–C) the mean level spacing D = 1 while in
(D) D = 10�3. The bandwidth Db = D · b is indicated in all cases. In (B) the blue dashed line corresponds to a
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result.
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The other deviation from the generic scenario, is the appearance of a non-universal
‘‘twilight regime’’ which can be found for some quantized systems [40]. In this regime a
co-existence of a perturbative and a semiclassical structure can be observed. For the Pul-
len–Edmonds model (14) there is no such distinct regime.

For the Hamiltonian model described by Eq. (14) the borders between the regimes can
be estimated [19]. Namely ec � 3.8�h3/2 and eprt � 5.3�h. In Fig. 8 we report the parametric
evolution of the eigenstates for the Hamiltonian model of Eqs. (14) and we compare the
outcomes with the results of the EBRM model [19]. Despite the overall quantitative agree-
ment, some differences can be detected:

• In the FOPT regime (see Fig. 8A), the RMT strategy fails in the far tails regime
D · |r| > Db where system specific interference phenomena become important.

• In the extended perturbative regime (see Fig. 8B) the line-shape of the averaged wave-
function P(n|m) is different from Lorentzian. Still the general features of Pprt (core-tail
structure) can be detected. In a sense, Wigner’s Lorentzian (32) is a special case of
core-tail structure. Finally, as in the standard perturbative regime one observes that
the far-tails are dominated by either destructive interference (left tail), or by construc-
tive interference (right tail).

• Deep in the non-perturbative regime (e > eprt) the overlaps P(n|m) are well approximated
by the semiclassical expression. The exact shape is determined by simple classical consid-
erations [19,42]. This is in contrast to the WBRM model which does not have a classical
limit.
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6. Linear response theory

The definition of regimes for driven systems is more complicated than the corre-
sponding definition in case of LDoS theory. It is clear that for short times we always
can use time-dependent FOPT. The question is, of course, what happens next. There
we have to distinguish between two types of scenarios. One type of scenario is wave-

packet dynamics for which the dynamics is a transient from a preparation state to
some new ergodic state. The second type of scenario is persistent driving, either linear
driving ð _x ¼ eÞ or periodic driving (x (t) = e sin(Xt)). In the latter case, the strength of
the perturbation depends on the rate of the driving, not just on the amplitude. The
relevant question is whether the long time dynamics can be deduced from the short time

analysis. To say that the dynamics is of perturbative nature means that the short time
dynamics can be deduced from FOPT, while the long time dynamics can be deduced
on the basis of a Markovian (stochastic) assumption. The best known example is the
derivation of the exponential Wigner law for the decay of a metastable state. The
Fermi-Golden-Rule (FGR) is used to determine the initial rate for the escaping pro-
cess, and then the long-time result is extrapolated by assuming that the decay pro-
ceeds in a stochastic-like manner. Similar reasoning is used in deriving the Pauli
master equation which is used to describe the stochastic-like transitions between the
energy levels in atomic systems.

A related question to the issue of regimes is the validity of linear response theory
(LRT). To avoid ambiguities we adopt here a practical definition. Whenever, the
result of the calculation depends only on the two point correlation function C(s),
or equivalently only on the band-profile of the perturbation (which is described by
~CðxÞ), then we refer to it as ‘‘LRT.’’ This implies that higher order correlations
are not expressed. There is a (wrong) tendency to associate LRT with FOPT. In fact
the validity of LRT is not simply related to FOPT. We shall clarify this issue in the
next section.

For both dE(t) and PðtÞ we have ‘‘LRT formulas’’ which we discuss in the next sections.
Writing the driving pulse as dx(t) = ef(t) for the spreading we get

dE2ðtÞ ¼ e2 �
Z 1

�1

dx
2p

~CðxÞ~F tðxÞ; ð37Þ

while for the survival probability we have

PðtÞ ¼ exp �e2 �
Z 1

�1

dx
2p

~CðxÞ
~F tðxÞ
ð�hxÞ2

 !
. ð38Þ

Two spectral functions are involved: one is the power spectrum ~CðxÞ of the fluctuations
defined in Eq. (19), and the other ~F tðxÞ is the spectral content of the driving pulse which is
defined as

~F tðxÞ ¼
Z t

0

dt0 _f ðt0Þe�ixt0
����

����
2

. ð39Þ

Here, we summarize the main observations regarding the nature of wavepacket dynam-
ics in the various regimes:
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• FOPT regime. In this regime PðtÞ � 1 for all times, indicating that all probability is all
the time concentrated on the initial level. An alternative way to identify this regime is
from dEcore(t) which is trivially equal to D.

• Extended perturbative regime. The appearance of a core-tail structure which is charac-
terized by separation of scales D� dEcore(t)� dE(t)� Db. The core is of non-pertur-
bative nature, but the variance dE2(t) is still dominated by the tails. The latter are
described by perturbation theory.

• Non-perturbative regime: The existence of this regime is associated with having the finite
energy scale Db. It is characterized by Db� dEcore(t) � dE(t). As implied by the termi-
nology, perturbation theory (to any order) is not a valid tool for the analysis of the
energy spreading. Note that in this regime, the spreading profile is characterized by a
single energy scale (dE � dEcore).
6.1. The energy spreading dE(t)

Of special importance for understanding quantum dissipation is the theory for the var-
iance dE2(t) of the energy spreading. Having dE(t) / � means linear response. If dE(t)/�
depends on �, we call it ‘‘non-linear response.’’ In this paragraph, we explain that linear
response theory (LRT) is based on the ‘‘LRT formula’’ Eq. (37) for the spreading. This
formula has a simple classical derivation (see Subsection 6.2 below).

From now on it goes without saying that we assume that the classical conditions for the
validity of Eq. (37) are satisfied (no �h involved in such conditions). The question is what

happens to the validity of LRT once we ‘‘quantize’’ the system. In previous publications
[8,10,11,19], we were able to argue the following:

(A) The LRT formula can be trusted in the perturbative regime, with the exclusion of the
adiabatic regime.

(B) In the sudden limit the LRT formula can also be trusted in the non-perturbative
regime.

(C) In general the LRT formula cannot be trusted in the non-perturbative regime.
(D) The LRT formula can be trusted deep in the non-perturbative regime, provided the

system has a classical limit.

For a system that does not have a classical limit (Wigner model) we were able to dem-
onstrate [8,10,11] that LRT fails in the non-perturbative regime. Namely, for the WBRM
model the response dE(t)/� becomes � dependent for large �, meaning that the response is
non-linear. Hence, the statement in item (C) above has been established. We had argued
that the observed non-linear response is the result of a quantal non-perturbative effect. Do
we have a similar type of non-linear response in the case of quantized chaotic systems? The
statement in item (D) above seems to suggest that the observation of such non-linearity is
not likely. Still, it was argued in [11] that this does not exclude the possibility of observing
a ‘‘weak’’ non-linearity.

The immediate (naive) tendency is to regard LRT as the outcome of quantum mechan-
ical first order perturbation theory (FOPT). In fact, the regimes of validity of FOPT and of
LRT do not coincide. On the one hand, we have the adiabatic regime where FOPT is valid
as a leading order description, but not for response calculation. On the other hand, the
validity of Eq. (37) goes well beyond FOPT. This leads to the (correct) identification
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[7,8,11] of what we call the ‘‘perturbative regime.’’ The border of this regime is determined
by the energy scale Db, while D is not involved. Outside of the perturbative regime we can-
not trust the LRT formula. However, as we further explain below, the fact that Eq. (37) is
not valid in the non-perturbative regime, does not imply that it fails there.

We stress again that one should distinguish between ‘‘non-perturbative response’’ and
‘‘non-linear response.’’ These are not synonyms. As we explain in the next paragraph, the
adiabatic regime is ‘‘perturbative’’ but ‘‘non-linear,’’ while the semiclassical limit is ‘‘non-
perturbative’’ but ‘‘linear.’’

In the adiabatic regime, FOPT implies zero probability to make a transitions to other lev-
els. Therefore, to the extent that we can trust the adiabatic approximation, all probability
remains concentrated on the initial level. Thus, in the adiabatic regime, Eq. (37) is not a val-
id formula: It is essential to use higher orders of perturbation theory, and possibly non-per-
turbative corrections (Landau-Zener [1,2]), to calculate the response. Still, FOPT provides a
meaningful leading order description of the dynamics (i.e., having no transitions), and
therefore we do not regard the adiabatic non-linear regime as ‘‘non-perturbative.’’

In the non-perturbative regime the evolution of Pt(n|m) cannot be extracted from pertur-
bation theory: not in leading order, neither in any order. Still it does not necessarily imply
a non-linear response. On the contrary: The semiclassical limit is contained in the deep
non-perturbative regime [8,11]. There, the LRT formula Eq. (37) is in fact valid. But its
validity is not a consequence of perturbation theory, but rather the consequence of quan-

tal-classical correspondence (QCC).
In the next subsection we will present a classical derivation of the general LRT expres-

sion (37). In Subsection 6.3 we derive it using first order perturbation theory (FOPT). In
Subsection 6.5, we derive the corresponding FOPT expression for the survival probability.

6.2. Classical LRT derivation for dE(t)

The classical evolution of EðtÞ ¼ HðQðtÞ; P ðtÞÞ can be derived from Hamiltonian equa-
tions. Namely,

dEðtÞ
dt
¼ ½H;H�PB þ

oH

ot
¼ �e _f ðtÞFðtÞ; ð40Þ

where [Æ]PB indicates the Poisson Brackets. Integration of Eq. (40) leads to

EðtÞ � Eð0Þ ¼ �e
Z t

0

Fðt0Þ _f ðt0Þdt0. ð41Þ

Taking a micro-canonical average over initial conditions we obtain the following expres-
sion for the variance

dE2ðtÞ ¼ e2

Z t

0

Cðt0 � t00Þ _f ðt0Þ _f ðt00Þdt0dt00; ð42Þ

which can be re-written in the form of (37).
One extreme special case of Eq. (37) is the sudden limit for which f(t) is a step function.

Such evolution is equivalent to the LDoS studies of Section 5. In this case Ft(x) = 1, and
accordingly

dE ¼ e�
ffiffiffiffiffiffiffiffiffiffi
Cð0Þ

p
; ½sudden case�. ð43Þ
cl
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Another extreme special case is the response for persistent (either linear or periodic)
driving of a system with an extremely short correlation time. In such case Ft(x) becomes
a narrow function with a weight that grows linearly in time. For linear driving (f(t) = t) we
get Ft(x) = t · 2pd(x). This implies diffusive behavior:

dEðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2DEt

p
; ½Kubo case�; ð44Þ

where DE / �2 is the diffusion coefficient. The expression for DE as an integral over the cor-
relation function is known in the corresponding literature either as Kubo formula, or as
Einstein relation, and is the corner stone of the Fluctuation–Dissipation relation.

6.3. Quantum LRT derivation for dE(t)

The quantum mechanical derivation looks like an exercise in first order perturbation the-
ory. In fact, a proper derivation that extends and clarifies the regime where the result is appli-
cable requires infinite order. If we want to keep a complete analogy with the classical
derivation we should work in the adiabatic basis [7]. (For a brief derivation see Appendix
D of [9].)

In the following presentation we work in a ‘‘fixed basis’’ and assume f ðtÞ ¼ f ð0Þ ¼ 0.
We use the standard textbook FOPT expression for the transition probability from an ini-
tial state m to any other state n. This is followed by integration by parts. Namely,

P tðnjmÞ ¼
e2

�h2
jBnmj2

Z t

0

dt0f ðt0ÞeiðEn�EmÞt0=�h

����
����
2

¼ e2

�h2
jBnmj2

~F tðxnmÞ
ðxnmÞ2

; ð45Þ

where xnm = (En�Em)/�h. Now we calculate the variance and use Eq. (22) so as to get

dE2ðtÞ ¼
X

n
P tðnjmÞðEn � EmÞ2 ¼ e2

Z 1

�1

dx
2p

~CðxÞ~F tðxÞ. ð46Þ
6.4. Restricted QCC

The FOPT result for dE(t) is exactly the same as the classical expression Eq. (37). It is
important to realize that there is no �h-dependence in the above formula. This correspon-
dence does not hold for the higher k-moments of the energy distribution. If we use the
above FOPT procedure we get that the latter scale as �hk�2.

We call the quantum-classical correspondence for the second moment ’’restricted
QCC.’’ It is a very robust correspondence [11]. This should be contrasted with ‘‘detailed
QCC’’ that applies only in the semiclassical regime where Pt(n|m) can be approximated
by a classical result (and not by a perturbative result).

6.5. Quantum LRT derivation for PðT Þ

With the validity of FOPT assumed we can also calculate the time-decay of the survival
probability PðtÞ. From Eq. (45) we get

pðtÞ �
X

nð6¼n0Þ
P tðnjmÞ ¼ e2

Z 1

�1

dx
2p

~CðxÞ
~F tðxÞ
ð�hxÞ2

. ð47Þ
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Assuming that PðtÞ ¼ 1� pðtÞ can be extrapolated in a ‘‘stochastic’’ fashion we get Eq.
(38). Another way to write the final formula is as follows:

PðtÞ ¼ exp � 1

�h2

Z t

0

Z t

0

Cðt0 � t00Þdxðt0Þdxðt00Þdt0dt00
� �

. ð48Þ

For constant perturbation (wavepacket dynamics) and assuming long times we obtain
the Wigner decay,

PðtÞ ¼ exp � e
�h

� 	2
~Cðx ¼ 0Þ � t

� �
; ð49Þ

which can be regarded as a special case of Fermi-Golden-Rule.

6.6. Note on PðT Þ for a time reversal scenario

The ‘‘LRT formula’’ for PðT Þ in the case of ‘‘driving reversal scenario’’ is

PDRðtÞ ¼ exp � e
�h

� 	2
Z T

0

Z T

0

Cðt0 � t00Þf ðt0Þf ðt00Þdt0dt00
� �

; ð50Þ

where we assumed the simplest scenario with f(t) = 1 for 0 < t < (T/2) and f(t) = �1 for
(T/2) < t < T. It is interesting to make a comparison with the analogous result in case
of ‘‘time reversal scenario.’’

The well known Feynman–Vernon influence functional has the following approxima-
tion:

F ½xA; xB� ¼ hWjU ½xB��1U ½xA�jWi

¼ exp � 1

2�h2

Z t

0

Z t

0

Cðt0 � t00ÞðxBðt0Þ � xAðt0ÞÞ ðxBðt00Þ � xAðt00ÞÞdt0dt00
� �

.

ð51Þ
This expression is in fact exact in the case of harmonic bath, and assuming thermal

averaging over the initial state. Otherwise, it should be regarded as an extrapolated version
of leading order perturbation theory (as obtained in the interaction picture). What people
call nowadays ‘‘fidelity’’ or ‘‘Loschmidt echo’’ is in fact a special case of the above expres-
sion which is defined by setting t = T/2 and xA = e/2 while xB = �e/2. Thus,

PTRðtÞ ¼ jF ½xA; xB�j2 ¼ exp � e
�h

� 	2
Z T=2

0

Z T=2

0

Cðt0 � t00Þdt0dt00
� �

. ð52Þ

Assuming a very short correlation time one obtains

PTRðT Þ ¼ exp � 1

2

e
�h

� 	2
~Cðx ¼ 0Þ � T

� �
; ð53Þ

which again can be regarded as a special variation of the Fermi-Golden-Rule (but note the
pre-factor 1/2).

6.7. The survival probability and the LDoS

For constant perturbation it is useful to remember that PðtÞ LDoS as follows:
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PðtÞ ¼ hnðx0Þje�iHðxÞt=�hjnðx0Þi
�� ��2

¼
X

m

e�iEmðxÞt=�hjhmðxÞjnðx0Þij2
�����

�����
2

¼
Z 1

1
PðEjmÞe�iEt=�hdE

����
����
2

.

ð54Þ

This implies that a Wigner decay is associated with a Lorentzian approximation for the
LDoS. In the non-perturbative regime the LDoS is not a Lorentzian, and therefore one
should not expect an exponential. In the semiclassical regime the LDoS shows system
specific features and therefore the decay of PðtÞ becomes non-universal.

7. Wavepacket dynamics for constant perturbation

The first evolution scheme that we are investigating here is the so-called wavepacket

dynamics. The classical picture is quite clear [17,18]: the initial preparation is assumed
to be a micro-canonical distribution that is supported by the energy surface
H0ðQ; P Þ ¼ Eð0Þ. Taking H to be a generator for the classical dynamics, the phase-space
distribution spreads away from the initial surface for t > 0. ‘Points’ of the evolving distri-
bution move upon the energy surfaces of HðQ; P Þ. Thus, the energy EðtÞ ¼ H0ðQðtÞ; PðtÞÞ
of the evolving distributions spreads with time. Using the LRT formula Eq. (39) for rect-
angular pulse f (t 0) = 1 for 0 < t 0 < t we get

~F tðxÞ ¼ 1� e�ixt
�� ��2 ¼ ðxtÞ2sinc2 xt

2

� 	
ð55Þ

and hence

dEclðtÞ ¼ e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðCð0Þ � CðtÞÞ

p
. ð56Þ

For short times t� scl we can expand the correlation function as CðtÞ � Cð0Þ � 1
2
C00ð0Þt2,

leading to a ballistic evolution. Then, for t	 scl, due to ergodicity, a ‘steady-state distribu-
tion’ appears, where the evolving ‘points’ occupy an ‘energy shell’ in phase-space. The thick-
ness of this energy shell equals dEcl. Thus, we have a crossover from ballistic energy spreading
to saturation:

dEðtÞ �
ffiffiffi
2
p
ðdEcl=sclÞt for t < sclffiffiffi

2
p

dEcl for t > scl

.

(
ð57Þ

Fig. 9 shows the classical energy spreading (heavy dashed line) for the 2DW model. In
agreement with Eq. (57) we see that dEcl(t) is first ballistic and then saturates. The classical
dynamics is fully characterized by the two classical parameters scl and dEcl.

7.1. The quantum dynamics

Let us now look at the quantized 2DW model. The quantum mechanical data are
reported in Fig. 9 (left panel) where different curves correspond to various perturbation
strengths e. As in the classical case (heavy dashed-line) we observe an initial ballistic-like
spreading [18] followed by saturation. This could lead to the wrong impression that the
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classical and the quantum spreading are of the same nature. However, this is definitely not
the case.

To detect the different nature of quantum ballistic-like spreading, one has to inquire
measures that are sensitive to the structure of the profile, such as the core-width dEcore(t).
In Fig. 10 we present our numerical data for the 2DW model. If the spreading were of a
classical type, it would imply that the spreading profile is characterized by a single energy
scale. In such a case we would expect that dEcore(t) � dE(t). Indeed this is the case for
e > eprt with the exclusion of very short times: The larger e is the shorter the quantal tran-
sient becomes. In the perturbative regimes, in contrast to the semiclassical regime, we have
a separation of energy scales dEcore(t)� dE(t). In the perturbative regimes dE(t) is deter-
mined by the tails, and it is not sensitive to the size of the ‘core’ region.

Using the LRT formula for PðT Þ we get, for short times (t� scl) during the ballistic-
like stage
-4 -2 0

ln(t)

-6
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-2

0

ln
( δ

E
co

re
(t

)/
ε)

2DW

2

Fig. 10. Simulations of wavepacket dynamics for the 2DW model. The evolution of the (normalized) core width
dEcore(t) is plotted as a function of time. The classical expectation is represented by a thick dashed line for the sake
of comparison. As � becomes larger it is approached more and more. We use the same set of parameters as in
Fig. 9.
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PðtÞ ¼ exp �Cðs ¼ 0Þ � et
�h

� 	2
� �

; ð58Þ

while for long times (t	 scl) we have the FGR decay of Eq. (49). Can we trust these
expressions? Obviously, FOPT can be trusted as long as PðtÞ � 1. This can be converted
into an inequality t < tprt, where

tprt ¼
eprt

e

� 	m¼1;2

scl. ð59Þ

The power m = 1 applies to the non-perturbative regime where the breakdown of PðT Þ
happens to be before scl. The power m = 2 applies to the perturbative regime where the
breakdown of PðT Þ happens after scl at tprt = �h/C, i.e., after the ballistic-like stage.

The long-term behavior of PðT Þ in the non-perturbative regime is not the Wigner
decay. It can be obtained by Fourier transform of the LDoS. In the non-perturbative
regime the LDoS is characterized by the single energy scale dEcl / dx. Hence, the decay
in this regime is characterized by a semiclassical time scale 2p�h/dEcl.

7.2. The EBRM dynamics

Next we investigate the applicability of the RMT approach to describe wavepacket
dynamics [17,18] and specifically the energy spreading dE(t). At first glance, we might
be tempted to speculate that RMT should be able, at least as far as dE(t) is concerned,
to describe the actual quantum picture. After all, we have seen in Subsection 6.1 that
the quantum mechanical LRT formula (46) for the energy spreading involves as its only
input the classical power spectrum ~CðxÞ. Thus we would expect that an effective RMT
model with the same band-profile would lead to the same dE (t).

However, things are not so trivial. In Fig. 9 we show the numerical results for the
EBRM model.2 In the standard and in the extended perturbative regimes we observe a
good agreement with Eq. (46). This is not surprising as the theoretical prediction was
derived via FOPT, where correlations between off-diagonal elements are not important.
In this sense the equivalence of the 2DW model and the EBRM model is trivial in these
regimes. But as soon as we enter the non-perturbative regime, the spreading dE (t) shows
a qualitatively different behavior from the one predicted by LRT: after an initial ballistic
spreading, we observe a premature crossover to a diffusive behavior

dEðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2DEt

p
. ð60Þ

The origin of the diffusive behavior can be understood in the following way. Up to time
tprt the spreading dE (t) is described accurately by the FOPT result (46). At t � tprt the
evolving distribution becomes as wide as the bandwidth, and we have dEcore � dE � Db

rather than dEcore� dE� Db. We recall that in the non-perturbative regime FOPT is sub-
jected to a breakdown before reaching saturation. The following simple heuristic picture
turns out to be correct. Namely, once the mechanism for ballistic-like spreading disap-
pears, a stochastic-like behavior takes its place. The stochastic energy spreading is similar
to a random-walk process where the step size is of the order Db, with transient time tprt.
Therefore, we have a diffusive behavior dE (t)2 = 2DEt with
2 The same qualitative results were found also for the prototype WBRM model, see [17].
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DE ¼ C 
 D2
b=tprt ¼ C 
 D2b5=2er=�h / �h; ð61Þ

where C is some numerical pre-factor. This diffusion is not of classical nature, since in the
�h fi 0 limit we get DE fi 0. The diffusion can go on until the energy spreading profile erg-
odically covers the whole energy shell and saturates to a classical-like steady state distri-
bution. The time terg for which we get ergodization is characterized by the condition
(DEt)1/2 < dEcl, leading to

terg ¼ b�3=2�her=D2 / 1=�h. ð62Þ

For completeness we note that for e > eloc there is no ergodization but rather dynamical
(‘‘Anderson’’ type) localization. Hence, in the latter case, terg is replaced by the break-time
tbrk. The various regimes and time scales are illustrated by the diagram presented in
Fig. 11.

8. Driving reversal scenario

A thorough understanding of the one-period driving reversal scenario [10] is both
important within itself, and for constituting a bridge towards a theory dealing with
the response to periodic driving [8]. In the following subsection, we present our results
for the prototype WBRM model, while in Subsection 8.2 we consider the 2DW model
and compare it to the corresponding EBRM model. The EBRM is better for the purpose
of making comparisons with the 2DW, while the WBRM is better for the sake of quan-
titative analysis (the ‘‘physics’’ of the EBRM and the WBRM models is, of course, the
same).

The quantities that monopolize our interest are the energy spreading dE (t) and the sur-
vival probability PðtÞ. In Figs. 12 and 13 we present representative plots. From a large col-
lection of such data that collectively span a very wide range of parameters, we extract
results for dE (T), for PðT Þ, and for the corresponding compensation times. These are pre-
sented in Figs. 12–17.
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8.1. Driving reversal scenario: RMT case

8.1.1. LRT for the energy spreading

Assuming that the driving reversal happens at t = T/2, the spectral content ~F tðxÞ
for T/2 < t < T is

~F tðxÞ ¼ j1� 2e�ixT=2 þ e�ixtj2. ð63Þ

Inserting Eq. (63) into Eq. (37) we get

dEðtÞ ¼ e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Cð0Þ þ 2CðtÞ � 4C

T
2

� �
� 4C t � T

2

� �s
. ð64Þ

For the WBRM model we can substitute in Eq. (64) the exact expression Eq. (26) for
the correlation function, and get

dEðtÞ ¼ 2er�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3bþ b sinc

t
tcl

� �
� 2b sinc

T
2scl

� �
� 2b sinc

t � T
2

scl

� �s
. ð65Þ

We can also find the compensation time tE
r by minimizing Eq. (64) with respect to t. For

the WBRM model we have
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2 cos T=2�t
scl

h i
sclðT =2� tÞ þ

2 sin T=2�t
scl

h i
ðT=2� tÞ2

þ
cos t

scl

h i
tscl

¼ 1

t2
sin

t
scl

� �
; ð66Þ

which can be solved numerically to get tE
r .

The spreading width at the end of the period is

dEðT Þ ¼ e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Cð0Þ þ 2CðT Þ � 8C

T
2

� �s
. ð67Þ

It is important to realize that the dimensional parameters in this LRT analysis are
determined by the time scale scl and by the energy scale dEcl. This means that we have
a scaling relation (using units such that r = D = �h = 1)

dEðT Þffiffiffi
b
p

e
¼ hE

LRTðbT Þ. ð68Þ

Deviation from this scaling relation implies a non-perturbative effect that goes beyond
LRT.

The LRT scaling is verified nicely by our numerical data (see upper panels of Fig. 14).
The values of perturbation strength for which the LRT results are applicable correspond
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to e < eprt. In the same figure we also plot the whole analytical expression (67) for the
spreading dE (T). Similarly in Fig. 14 (lower panels) we present our results for the compen-
sation time tE

r . All the data fall one on top of the other once we rescale them. It is impor-
tant to realize that the LRT scaling relation implies that the compensation time tE

r is
independent of the perturbation strength e. It is determined only by the classical correlation
time scl. In the same figure, we also present the resulting analytical result (heavy-dashed
line) which had been obtained via Eq. (66). An excellent agreement with our data is
evident.

8.1.2. Energy spreading in the non-perturbative regime

We turn now to discuss the dynamics in the non-perturbative regime, which is our main
interest. In the absence of driving reversal (see Subsection 7.2) we obtain diffusion
ðdEðtÞ /

ffiffi
t
p
Þ for t > tprt, where

tprt ¼ �h=ð
ffiffiffi
b
p

reÞ. ð69Þ
If (T/2) < tprt, this non-perturbative diffusion does not have a chance to develop, and

therefore we can still trust Eq. (64). So the interesting case is (T/2) > tprt, which means
large enough e. In the following analysis we distinguish between two stages in the non-per-
turbative diffusion process. The first stage (tprt < t < tsdn) is reversible, while the second
stage (t > tsdn) is irreversible. For much longer time scales we have recurrences or
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localization, which are not the issue of this paper. The new time scale (tsdn) did not appear
in our ‘‘wavepacket dynamics’’ study, because it can be detected only in driving reversal
experiments.
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The determination of the time scale tsdn is as follows. The diffusion coefficient is
DE = D2b5/2re/�h up to a numerical pre-factor. The diffusion law is dE2(t) = DEt. The dif-
fusion process is reversible as long as E does not affect the relative phases of the partici-
pating energy levels. This means that the condition for reversibility is (dE(t) · t)/�h� 1.
The latter inequality can be written as t < tsdn, where

tsdn ¼
�h2

DE

� �1=3

¼ �h3

D2b5=2re

� �1=3

. ð70Þ

It is extremely important to realize that without reversing the driving, the presence or
the absence of E in the Hamiltonian cannot be detected. It is only by driving reversal that
we can easily determine (as in the upper panels of Fig. 12) whether the diffusion process is
reversible or irreversible.

The dimensional parameters in this analysis are naturally the time scale tsdn and the
resolved energy scale �h/T. Therefore, we expect to have instead of the LRT scaling, a dif-
ferent ‘‘non-perturbative’’ scaling relation. Namely, dE(T)/(�h/T) should be related by a
scaling function to T/tsdn. Equivalently (using units such that r = D = �h = 1) it can be
written as

dEðT Þ
b5=6e1=3

¼ hE
nprtðb5=6e1=3T Þ. ð71Þ

Obviously, the non-perturbative scaling with respect to e1/3 goes beyond any implica-
tions of perturbation theory. It is well verified by our numerical data (see upper right panel
of Fig. 14). The values of perturbation strength for which this scaling applies correspond
to e > eprt. The existence of the tsdn scaling can also be verified in the lower right panel of
Fig. 14, where we show that tr/T is by a scaling function related to b5/6e1/3T.

8.1.3. Decay of PðT Þ in the FOPT regime

We can substitute Eq. (63) for the spectral content ~F tðxÞ of the driving into the LRT
formula Eq. (47), and come out with the following expression for the survival probability
at the end of the period t = T
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PðT Þ � expð�e2T 4b3Þ. ð72Þ
This is a super-Gaussian decay, which is quite different from the standard Gaussian de-

cay Eq. (58) or any other results on reversibility that appear in literature [20–24]. We have
verified that this expression is valid in the FOPT regime. See Fig. 15A.

For the WBRM model, we get the following expression for p (t) after substituting the
spectral content ~F tðxÞ given from Eq. (63)

pðtÞ ¼ ðerÞ
2

D�h
�
Z xcl

�xcl

dx
6� 4½cosðxT

2
Þ þ cosðxðt � T

2
ÞÞ� þ 2 cosðxtÞ

x2
. ð73Þ

The corresponding compensation time tP
r can be found after minimizing the above

expression (corresponding to the maximization of PðtÞ ¼ 1� pðtÞ) with respect to time
t. This results in the following equation:

siðxcltÞ ¼ 2si xcl t � T
2

� �� �
; ð74Þ

which has to be solved numerically to evaluate tP
r . Above siðxÞ ¼

R x
0

sin x
x . Our numerical

data are reported in Fig. 16 together with the theoretical prediction (74).

8.1.4. Decay of PðT Þ in the Wigner regime

We now turn to discuss PðtÞ in the ‘‘Wigner regime.’’ By this we mean ec < e < eprt. This
distinction does not appear in the dE (t) analysis. The time evolution of dE (t) is dominated
by the tails of the distribution and does not affect the ‘‘core’’ region. Therefore, dE (t)
also agreed with LRT outside of the FOPT regime in the whole (extended) perturbative
regime. But this is not the case with PðtÞ, which is mainly influenced by the ‘‘core’’ dynam-
ics. As a result in the ‘‘Wigner regime’’ we get different behavior compared with the FOPT
regime.

We look at the survival probability PðT Þ at the end of the driving period. In the Wigner
regime, instead of the LRT-implied super-Gaussian decay, we find a Wigner-like decay:

PðT Þ � e�CðeÞT ; ð75Þ
where C � e2/D. In Fig. 15B we present our numerical results for various perturbation
strengths in this regime. A nice overlap is observed once we rescale the time axis as
e2 · T. We would like to emphasize once more that both in the standard and in the extend-
ed perturbative regimes the scaling law involves the perturbation strength e. This should be
contrasted with the LRT scaling of dE (t).

What about the compensation time tP
r ? A reasonable assumption is that it will exhibit a

different scaling in the FOPT regime and in the Wigner regime (as is the case of PðT Þ).
Namely, in the FOPT regime we would expect ‘‘LRT scaling’’ with scl, while in the Wigner
regime we would expect ‘‘Wigner scaling’’ with tprt = �h/C. The latter is of non-perturbative
nature and reflects the ‘‘core’’ dynamics. To our surprise we find that this is not the case.
Our numerical data presented in Fig. 16 show beyond any doubt that the ‘‘LRT scaling’’
applies within the whole (extended) perturbative regime, as in the case of tE

r , thus not
invoking the perturbation strength e. We see that the FOPT expression (74) for tP

r shown
as a heavy-dashed line describes the numerical findings.

We conclude that the compensation time tr is mainly related to the dynamics of the
tails, and hence can be deduced from the LRT analysis.
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8.1.5. Decay of PðT Þ in the non-perturbative regime

Let us now turn to the non-perturbative regime (see Fig. 15C). As in the case of the spread-
ing kernel dE (T), the decay ofPðT Þ is no longer captured by perturbation theory. Instead, we
observe the same non-universal scaling with respect to e1/3 · T as in the case of dE (T).

PðT Þ ¼ hP
nprtðb5=6e1=3T Þ. ð76Þ

The reason is that in the non-perturbative regime the two energy scales C and Db, which
were responsible for the difference between PðT Þ and dE(T), lose their meaning. As a con-
sequence, the spreading process involves only one time scale and the behavior of both
PðT Þ and dE (T) becomes similar, leading to the same scaling behavior.

8.2. Driving reversal scenario: 2DW case

In the representative simulations of the 2DW model in Fig. 12 (upper left panel) we see
that the spreading dE(t) for T = 0.48 and various perturbation strengths e follows the
LRT predictions very well. Fig. 12 (lower left panel) shows that the agreement with the
LRT is observed for any value of the period T. This stands in clear contrast to the EBRM
model shown in Fig. 12 (right panels).

The agreement with LRT in the non-perturbative regime, as in the case of wavepacket
dynamics, reflects detailed QCC. We recall that ‘‘to get into the non-perturbative regime’’
and ‘‘to make �h small’’ means the same. All our simulations are done in a regime where
LRT can be trusted at the classical (= non-perturbative) limit. It is only for RMT models
that we observe a breakdown of LRT trusted in the non-perturbative regime.

What about PðT Þ? This quantity has no classical analogue. Therefore, QCC consider-
ations are not applicable. Also LDoS considerations cannot help here. The one-to-one
correspondence between the LDoS and the survival probability applies to the simple wave-
packet dynamics scenario (constant perturbation).

It is practically impossible to make a quantitative analysis of PðT Þ in the case of a real
model because the band-profile is very structured and there are severe numerical limita-
tions. Rather, what we can easily do is to compare the 2DW with the corresponding
EBRM. Any difference between the two constitutes an indication for a non-perturbative
effect. Representative simulations are presented in Fig. 13.

In Fig. 17 we show the dependence of the compensation time tP
r on T for the EBRM

model. We see very nice scaling behavior that indicates that our numerics (as far as
PðT Þ is concerned!) is limited to the perturbative regime. We emphasize again that the
physics of PðT Þ is very different from the physics of dE (T). Therefore, this finding by itself
should not be regarded as very surprising. A sharp crossover to a non-perturbative behav-
ior can be expected for a ‘‘sharp’’ band-profile only (which is the WBRM and not the
EBRM—see Fig. 16).

Now we switch from the EBRM model to the 2DW model. Do we see any deviation
from LRT scaling? The answer from Fig. 17 is clearly yes, as reflected by the e dependence
of the curve. The effect is small, but ‘‘it is there.’’ It indicates that the ‘‘body’’ of the prob-
ability distribution, in the case of the 2DW dynamics, does not evolve the same way as in
the EBRM case. Indeed we know that the main part of the distribution evolves faster (in a
ballistic fashion rather than diffusively), and therefore we observe lower values of tP

r .
Assuming that the decay of PðT Þ is given by the exponential law, we extract the

corresponding decay rates c. It should be clear that the fitting is done merely to extract
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Fig. 18. The estimated decay rate c for the same simulations as in the previous figure.
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a numeric measure for the behavior of the decay. We would not like to suggest that the
decay looks strictly exponential. The results are reported in Fig. 18. We find that for
e < eprt, the decay rate c(e) / e2, as expected by Wigner’s theory, while for e > eprt we find
that c / e. This linear dependence on e is essentially the same as in the corresponding
wavepacket dynamics scenario. There it is clearly associated with the width dEcl / e of
the LDoS.

As far as c is concerned the behavior of 2DW and the EBRM models are the same, and
there is an indication of the crossover from the perturbative to the non-perturbative
regime, as implied (in a non-rigorous fashion) by the LDoS theory. It is tP

r rather than c
that exhibits sensitivity to the nature of the dynamics. This is because tP

r is sensitive to
the evolution of the main part of the distribution. We already had made this observation
on the basis of the analysis of the WBRM model (see previous Subsection 8.1). Here, we
see another consequence of this observation.

9. Conclusions

There is a hierarchy of challenges in the study of quantum dynamics. The simple way to
explain this hierarchy is as follows: let us assume that there are two Hamiltonians, H1 and
H2, that differ slightly from each other. Let us then quantify the difference by a parameter
e. Let us distinguish between a FOPT regime, Wigner regime, and non-perturbative (semi-
circle or semiclassical) regime according to the line shape of the LDoS. Do we have enough

information to say something about the dynamics?

In the conventional wavepacket dynamics, one Hamiltonian is used for preparation and
for measurement, while the other for propagation. It is well known that the Fourier trans-
form of the LDoS gives the survival amplitude and hence PðtÞ. But what about other fea-
tures of the dynamics. What about the energy spreading dE (t) for example? It turns out
that the answer requires more than just knowing the LDoS. In particular we observe that
in the non-perturbative regime physical models differ from the corresponding RMT mod-
el. In the former case we have ballistic spreading while in the latter we have diffusion.

Is there any new ingredient in the study of driving reversal dynamics? Maybe it is just a

variation on conventional wavepacket dynamics? The answer turns out to be interesting.
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There is a new ingredient in the analysis. This becomes very clear in the RMT analysis
where we find a new time scale that distinguishes between a stage of ‘‘reversible diffusion’’
and a stage of ‘‘irreversible diffusion.’’ This time scale (tsdn) can only be probed in a driving
reversal experiment. It is absent in the study of conventional wavepacket dynamics.

Things become more interesting, and even surprising, once we get into details. Let us
summarize our main findings. We start with the conventional wavepacket dynamics,
and then turn to the driving reversal scenario.

The main observations regarding wavepacket dynamics are summarized by the dia-
grams in Fig. 11. We always have an initial ballistic-like stage which is implied by FOPT.
During this stage the first order (in-band) tails of the energy distribution grow like t2. We
call this behavior ‘‘ballistic-like’’ because the second moment dE(t) grows like t2. It is not a
genuine ballistic behavior because the rth moment does not grow like tr but rather all the
moments of this FOPT distribution grow like t2.

The bandwidth Db is resolved at the time scl. In the perturbative regime this happens
before the breakdown of perturbation theory, while in the non-perturbative regime the
breakdown tprt happens before scl. As a result, in the non-perturbative regime we can
get a non-trivial spreading behavior which turns out to be ‘‘ballistic’’ or ‘‘diffusive,’’
depending on whether the system has a classical limit or is being RMT modeled.

Once we consider a driving reversal scenario, it turns out to be important to mark the
time tsdn when the energy distribution is resolved. The question is ill-defined in the pertur-
bative regime because there the energy distribution is characterized by two energy scales
(the ‘‘bandwidth’’ and the much smaller ‘‘core width’’). But the question is well-defined
in the non-perturbative regime where the distribution is characterized by one energy scale.
It is not difficult to realize that for ballistic behavior tsdn � scl which is also the classical
ergodic time. But for diffusion we get a separation of time scales tprt� tsdn� scl. Thus,
we conclude that the diffusion has two stages: One is reversible while the other is
irreversible.

But the second moment does not fully characterize the dynamics. In the other extreme
we have the survival probability. Whereas dE (T) is dominated by the tails, PðT Þ is dom-
inated by the ‘‘core’’ of the distribution. Therefore, it becomes essential to distinguish
between the FOPT regime where the ‘‘core’’ is just one level, and the rest of the perturba-
tive regime (the ‘‘Wigner’’ regime) where the core is large (but still smaller compared with
the bandwidth).

The main findings regarding the driving reversal scenario are summarized by the follow-
ing table:

Regime Perturbation PðT Þ behavior t behavior dE(T) behavior

strength
r

First order
perturbative
e < ec
 LRT
(super-Gaussian)
LRT
 LRT (ballistic-like)
Extended
perturbative
(‘‘Wigner’’)
ec < e < eprt
 Wigner
(Exponential)
LRT(!)
 LRT (ballistic-like)
Non-
perturbative
e > eprt
 Non-perturbative
(non-universal)
Non-perturbative
(non-universal)
Non-perturbativea

(diffusive/ballistic)

a For the WBRM we have diffusion while for the 2DW model we have ballistic behavior as implied by classical

LRT.
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As expected we find that PðT Þ obeys FOPT behavior in the FOPT regime, which turns
out to be super-Gaussian decay. In the Wigner regime dE (T) still obeys LRT because the
tails obey FOPT, while the non-perturbative core barely affects the second moment. But in
contrast to that PðT Þ is sensitive to the core, and therefore we find Wigner (exponential)
decay rather than FOPT (super-Gaussian) behavior. However, when we look more care-
fully at the whole PðT Þ curve, we find that this is not the whole story. We can characterize
PðT Þ by the compensation time tr. It turns out that tr is sensitive to the nature of the
dynamics. Consequently it obeys ‘‘LRT scaling’’ rather than ‘‘Wigner scaling.’’ This has
further consequences that are related to quantal-classical correspondence. Just by looking
at PðT Þ we cannot tell whether we look at the ‘‘real simulation’’ or on its RMT modeling.
But looking on tr we can find a difference. It turns out that in the physical model tr exhibits
e dependence, while in the case of RMT modeling tr is independent of e and exhibits
‘‘LRT-scaling.’’

Finally, we come to the non-perturbative regime. Here we have, in a sense a simpler sit-
uation. We have only one energy scale, and hence only one time scale, and therefore dE (T)
and PðT Þ essentially obey the same scaling. Indeed we have verified that the non-pertur-
bative scaling with tsdn in WBRM simulations is valid for both the second moment and the
survival probability.

Finally, we would like to emphasize that the notion of ‘‘non-perturbative’’ behavior
should not be confused with ‘‘non-linear’’ response. In case of quantized models, linear
response of the energy spreading dE (T) is in fact a consequence of non-perturbative
behavior. This should be contrasted with the WBRM model, where QCC does not apply,
and indeed deviations from the linear response appear once we enter the non-perturbative
regime.

The study of irreversibility in a simple driving reversal scenario is an important step
towards the understanding of irreversibility and dissipation in general. The analysis of dis-
sipation reduces to the study of energy spreading for time-dependent Hamiltonians
HðQ; P ; xðtÞÞ. In generic circumstances the rate of energy absorption is determined by a
diffusion-dissipation relation: The long time process of dissipation is determined by the
short time diffusion process. The latter is related to the fluctuations ~CðxÞ via what we call
‘‘LRT formula’’. Thus the understanding of short time dynamics is the crucial step in
establishing the validity of the fluctuation-dissipation relation.
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