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Abstract. – The Landauer conductance of a two terminal device equals to the number of
open modes in the weak scattering limit. What is the corresponding result if we close the
system into a ring? Is it still bounded by the number of open modes? Or is it unbounded
as in the semi-classical (Drude) analysis? It turns out that the calculation of the mesoscopic
conductance is similar to solving a percolation problem. The “percolation” is in energy space
rather than in real space. The non-universal structures and the sparsity of the perturbation
matrix cannot be ignored.

The theory for the conductance of closed mesoscopic rings has attracted a lot of interest [1–
6]. In a typical experiment [7] a collection of mesoscopic rings are driven by a time dependent
magnetic flux Φ(t) which creates an electro-motive-force (EMF) −Φ̇ in each ring. Assuming
that Ohm’s law applies, the induced current is I = −GΦ̇ and consequently Joule’s law gives

Rate of energy absorption = G Φ̇2 (1)

where G is called the conductance. For diffusive rings the Kubo formula leads to the Drude
formula for G. A major challenge in past studies was to calculate the weak localization correc-
tions to the Drude result, taking into account the level statistics and the type of occupation [6].
It should be clear that these corrections do not challenge the leading order Kubo-Drude result.

It is just natural to ask what is the conductance if the mean free path ` increases, so that
we have a ballistic ring as in Fig. 1, where the total transmission is gT ∼ 1. To be more precise,
we assume that the mean free path ` ≈ L/(1− gT ) is much larger than the perimeter L of the
ring. In such circumstances “quantum chaos” considerations become important. Surprisingly
this question has not been addressed so far [8], and it turns out that the answer requires
considerations that go well beyond the traditional framework. Following [9] we argue that the
calculation of the energy absorption in Eq.(1) is somewhat similar to solving a percolation
problem. The “percolation” is in energy space rather than in real space. This idea was further
elaborated in [10] using a resistor network analogy (Fig. 2). As in the standard derivation of
the Kubo formula it is assumed that the leading mechanism for absorption is Fermi-golden-
rule transitions. These are proportional to the squared matrix elements |Inm|2 of the current
operator. Still, the theory of [9] does not lead to the Kubo formula. This is because the rate
of absorption depends crucially on the possibility to make connected sequences of transitions,
and it is greatly reduced by the presence of bottlenecks. It is implied that both the structure
of the |Inm|2 band profile and its sparsity play a major role in the calculation of G.
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The outline of this Letter is as follows: (a) We define a model example for which the
analysis is carried out; (b) We make a distinction between the Landauer, the Drude and the
actual mesoscopic conductance. (c) We calculate the matrix elements of the current operator;
(d) We define an “averaging” procedure that allows the calculation of G. The result of the
calculation is contrasted with that of the conventional Kubo approach.

We regard the ballistic ring (Fig.1) as a set ofM open modes, and a small scattering region
that is characterized by its total transmission gT . To be specific we adopt a convenient network
model where all the bonds (a = 1, 2, ...,M) have similar length La ∼ L. The scattering is
described by

S =
(
ε exp

(
i 2π a b

M
) √

1−Mε2δa,b√
1−Mε2δa,b −ε exp

(
−i 2π a b

M
)) (2)

The transitions probability matrix g is obtained by squaring the absolute values of the S
matrix elements. It is composed of a reflection matrix [gR]a,b = ε2 and a transmission matrix
[gT ]a,b = (1−Mε2)δa,b. The total transmission is gT = 1−Mε2. If the system were open as
in Fig.1c. then its Landauer conductance would be

GLandauer =
e2

2π~
∑
a,b

[gT ]a,b =
e2

2π~
MgT (3)

If we had a closed ring and we could assume that there is no quantum interference within the
bonds, then we could use the multimode conductance formula of Ref. [8]

GDrude =
e2

2π~
∑
a,b

[
2gT /(1−gT +gR)

]
a,b

=
e2

2π~
M gT

1− gT
(4)

The first expression can be derived in various ways: Boltzmann picture formalism; semiclassi-
cal Kubo formalism; or quantum Kubo calculation that employs a diagonal approximation. In
order to get the specific result for our network model we had to invert the matrix (1−gT +gR).
We see that in the limit gT → 1 the semiclassical GDrude is unbounded, while GLandauer is
bounded by the number of open modes.

Our objective is to find the conductance of the closed ring in circumstances such that
the motion inside the ring is essentially coherent (quantum interference within the bonds is
not ignored): As in the traditional linear response theory (LRT) it is assumed that the level
broadening Γ is larger compared with the mean level spacing, but otherwise very small semi-
classically. On the other hand, in contrast to LRT, we assume “mesoscopic circumstance”,
meaning that the environmentally-induced relaxation is very slow compared with the EMF-
induced rate of transitions. An extensive discussion of these conditions can be found in [9].
The calculation of G is done using the formula

G = π~ %2
F × 〈〈|Inm|2〉〉 =

e2

2π~
× 2M2〈〈|Inm|2〉〉 ≡

e2

2π~
× 2M2g (5)

where %F is the density of states at the Fermi energy, and Inm are the matrix elements
of the current operator. For our network system %F = ML/(π~vF ), where vF is the Fermi
velocity. Furthermore it is convenient to write Inm = −i(evF /L)Inm so as to deal with real
dimensionless quantities, leading to the second expression. Eq.(5) would be the Kubo formula
if 〈〈...〉〉 stood for a simple algebraic average. But in view of the percolation-like nature of the
energy absorption process, the definition of 〈〈...〉〉 involves a more complicated “averaging”
procedure that will be discussed and developed later.
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The eigenstates: Our model system, in the absence of driving, is time reversal symmetric.
Consequently the unperturbed eigenfunctions can be chosen as real

|ψ〉 =
∑

a

Aa sin(kx+ ϕa) ⊗ |a〉. (6)

For a given gT we can find numerically the eigenvalues and the eigenstates, thus obtaining a
table (kn, ϕ

(n)
a , A

(n)
a ) with n = level index. In the limit of small ε it is not difficult to derive

the expressions

kn ≈
(

2π × integer± 1√
M

ε

)
1
La

(7)

ϕ(n)
a ≈ −πa

2

M
− 1

2
kLa +

{
π/4
3π/4 (8)

The numerical results over the whole range of gT values are presented in Fig. 3. By normaliza-
tion we have

∑
a(La/2)A2

a ≈ 1. The degree of ergodicity of a wavefunctions is characterized
by the participation ratio:

PR ≡

[∑
a

(
La

2
A2

a

)2
]−1

≈ 1 +
1
3
(1− gT )M (9)

The approximation in the last equality is based on the following observations: By definition
we have PR ≈ 1 for a wavefunction which is localized on one bond, while PR ∼M for an
ergodic wavefunction. In the trivial regime (1 − gT ) � 1/M the eigenstates are like those
of a reflectionless ring, with PR ∼ 1. Once (1 − gT ) becomes larger compared with 1/M,
first order perturbation theory breaks down, and the mixing of the levels is described by a
Wigner Lorentzian. The analysis is completely analogous to that of the single mode case in
Ref. [9], and leads to PR ∝ (1− gT )M. This is confirmed by the numerical analysis (Fig. 4).
In practice we have found that the proportionality constant is roughly 1/3. Our interest is
focused in the non-trivial ballistic regime

1/M � (1− gT ) � 1 (10)

where we have strong mixing of levels (PR � 1), but still the mean free path ` ≈ L/(1− gT )
is very large compared with the ring’s perimeter (` � L). It is important to realize that in
this regime we do not have “quantum chaos” ergodicity. Rather we have PR �M meaning
that the wavefunctions occupy only a small fraction of the classically accessible phase space.

The matrix elements: The current operator I is the symmetrized version of ev̂δ(x̂−x0),
where v̂ and x̂ are the velocity and the position operators respectively. The section through
which the current is measured is arbitrary and we simply take x0 = +0. Given a set of
eigenstates, it is straightforward to calculate the matrix elements of the current operator
(Fig. 5), and to get insight into their statistical properties (e.g. Fig. 6). The scaled matrix
elements are

Inm ≈
∑

a

La

2
A(n)

a A(m)
a sin(ϕ(n)

a − ϕ(m)
a ) (11)

Needless to say that small PR of wavefunctions implies sparsity of Inm. It is also worthwhile
to point out that there are several extreme cases that allow simple estimates: The case where
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n and m are localized on different bonds leading to |Inm|2 = 0; The case where n and m are
nearly degenerate states localized on the same wire leading to |Inm|2 = 1; The case where
n and m are ergodic and uncorrelated leading to |Inm|2 ≈ 1/(2M); Irrespective of this, it is
clear that by normalization the maximal value that can be obtained is |Inm|2 = 1.

Landauer? Drude? From Eq.(5) and the above discussion we deduce that

G
∣∣∣
ergodic

=
e2

2π~
M (12)

G
∣∣∣
maximal

=
e2

2π~
2M2 (13)

The first expression suggests agreement with the Landauer result if we had complete “quantum
chaos” ergodicity, while Eq.(13) implies a necessary condition for a correspondence with the
semiclassical result Eq.(4):

1
1− gT

�M (14)

This can be rephrased by saying that the ballistic time tcl = (1− gT )−1 × (L/vF ) should
be much smaller compared with the Heisenberg time tH = M × (L/vF ). In fact it has
been argued [9], on the basis of a diagonal approximation, that semiclassical correspondence
is indeed realized in the ‘Kubo calculation”. By “Kubo calculation” we mean Eq.(5) with
algebraic average over the near diagonal matrix elements of |Inm|2. The Kubo calculation
might have a physical validity in the presence of a strong relaxation process that suppresses
the quantum nature of the dynamics. See [9] for a detailed discussion of this point.

The FGR picture: The Hamiltonian in the adiabatic basis is H 7→ Enδnm + Φ̇Wnm

where Wnm = i~Inm/(En−Em), and −Φ̇ is the EMF. The FGR transition rate between
level n and level m is proportional to |Wnm|2 multiplied by a broadened δ(En−Em) which
we call F (). The effective broadening of the levels reflects either the power spectrum or the
non-adiabaticity of the driving. After trivial scaling the dimensionless transition rates are

gnm =
|Inm|2

(n−m)2
1
γ
F

(
n−m
γ

)
(15)

The dimensionless broadening parameter γ is identical with Γ/∆ of Ref. [9, 11] and with
~ω0/∆ of Ref. [10], where ∆ is the mean level spacing. There is an implicit approximation
in Eq.(15), namely (En − Em)/∆ ≈ (n − m), that underestimates the exceptionally large
couplings between pairs of almost degenerated levels. But this is not going to be reflected in
the energy absorption rate, since the latter is indifferent(!) to large sparse values.

The calculation of the conductance: Given the transition rates gnm we want to cal-
culate the rate of energy absorption and hence G as defined by Eq.(1). It is most convenient
to exploit the “resistor network” analogy of Ref. [10](Fig. 2). Within this framework g of
Eq.(5) is simply the resistivity of the network. The practical numerical procedure is as fol-
lows: (i) Cut an N site segment out of the network. (ii) Define a vector Jn(n = 1..N)
whose elements are all zero except the first and the last that equal J1 = +J and JN = −J .
(iii) Solve the Kirchhoff equation Jn =

∑
m gnm(Vn − Vm) for the vector V . (iv) Find the

overall resistance of the truncated network gN = J/(VN − V1). And finally: (v) Define the
resistivity as g−1 = g−1

N /N . For a locally homogeneous network it has been argued in [9]
that g ≈ 〈〈(1/2)

∑
m(m− n)2gnm〉〉, where the sum over m reflects the addition of resistors

in parallel, and the harmonic average 〈〈...〉〉 reflects the addition of resistors in series. This
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expression can be written simply as g = 〈〈|Inm|2〉〉, with the implicit understanding that the
harmonic average is taken over the near diagonal elements of the γ-smoothed |Inm|2 matrix.

Numerical results: The results of the calculation are presented in Figs. 7-8. The calcu-
lation has been done numerically using the resistor network procedure that has been explained
in the previous paragraph. We did not to rely on the harmonic average approximation because
there are prominent structures (notably the strongly coupled nearly degenerate levels) that
make it a-priori questionable. However from the numerics it turns out (not displayed) that
the harmonic average is doing quite well. We mention this fact because it gives an insight for
the numerical results which are displayed in Fig. 7.

Our numerical results suggest that typically G < GLandauer. For an optimal value of γ, such
that G is maximal, it seems that we still have G . GLandauer. It is too difficult to figure out
the numerical prefactor which is involved in the latter inequality (Fig. 8). Our conjecture is
that this inequality is true in general (disregarding the prefactor which is of order 1). We did
not find a mathematical argument to establish this conjecture, except the very simple case of
a single mode ballistic ring [9] where the calculations of G can be done analytically.

Conclusions: In this Letter we have studied the mesoscopic conductance of a ballistic
ring with mean free path ` � L. The specific calculation has been done for a network
model, but all its main ingredients are completely generic. Ballistic rings with ` � L are
not typical “quantum chaos” systems. Their eigenfunctions are not ergodic over the whole
accessible phase space, and therefore the perturbation matrix Inm is highly structured and
sparse. Consequently the Kubo formula is no longer valid, and one has to adopt an appropriate
“resistor network” procedure in order to calculate the true mesoscopic conductance. However,
it should be emphasized that if there is either a very effective relaxation or decoherence process,
then the theory that we have discussed does not apply. In the presence of strong environmental
influence one can justify, depending on the circumstances [8,9], either the use of the traditional
Kubo-Drude result, or the use of the Landauer result.
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Fig.1: (a) A billiard example for a ballis-

tic ring. The annular region supports M
open modes. The electrons are scattered by

a small bump. (b) A network model of a

ballistic ring. In the numerics the lengths of

the M bonds (0.9 < La < 1.1) are chosen in

random. The scattering is described by an

S matrix. (c) The associated open (leads)

geometry which is used in order to define the

S matrix and the Landauer conductance.
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Fig.2: The EMF induces diffusion of probability in en-

ergy space, and hence absorption of energy. Within the

framework of the Fermi golden rule picture the flow of

the probability in the multi level system is analogous

to the flow of a current via a resistor network. The

resistance of each “resistors” corresponds to g−1
nm. The

inverse of the diffusion coefficient is re-interpreted as

the resistivity of the network. On the right we display

a truncated segment, where +J is the current injected

from one end of the network, while −J is the same cur-

rent extracted from the other end. The injected current

to all the other nodes is zero.
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Fig.3: The eigenvalues kn within a small energy

window around k ∼ 2000 are shown as a function

of 1−gT . We consider here a network model with

M = 50 bonds. The length of each bond was

chosen in random within 0.9 < La < 1.1.
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Fig.4: For each value of gT we calculate the

participation ratio (PR) for all the eigenstates.

We display (as symbols) the minimum value, the

maximum value, and a set of randomly chosen

representative values. The solid line is the av-

erage PR, while the dotted line is the formula

PR ≈ 1 + 1
3
(1− gT )M.
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Fig.5: The image of the perturbation matrix |Inm|2 for gT = 0.9. The right panel is a zoomed image. If we

chose larger 1− gT more elements would become non-negligible, and the matrix would become less structured

and less sparse.
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Fig.6: The n-averaged value of 2M2|In,n+r|2 as a function of 1 − gT for r = 1, 2, 3, 4, 5. The ergodic value

M and half the maximal value M2 are indicated by horizontal dotted lines. The left panel is normal scale,

while the right panel is log-log scale.
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Fig.7: The mesoscopic conductance G in units of

e2/(2π~) as a function of 1−gT for γ = 1, 2, 3, 4, 5.

Note again that the total number of open modes

in our numerics is M = 50. The dotted line is

GLandauer while the dashed line is GDrude.
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Fig.8: The mesosocopic conductance divided by

the number of open modes for M up to 300. Here

γ = 3 and gT = 0.8. The different curves are cal-

culated with segments of length N = 30, 50, 70, so

as to provide an estimate for the numerical error.


