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Abstract
The plane-wave decomposition method, a widely used means of numerically
finding eigenstates of the Helmholtz equation in billiard systems is described
as a variant of the mathematically well-established boundary integral method
(BIM). A new unified framework encompassing the two methods is discussed.
Furthermore, a third numerical method, which we call the gauge freedom
method is derived from the BIM equations. This opens the way to further
improvements in eigenstate search techniques.

PACS number: 05.45.Mt

1. Introduction

Solving the Helmholtz equation within a domain given Dirichlet boundary conditions is of
great interest to both physicists [1] and engineers. Firstly, the Helmholtz equation is the
simplest example of a wave equation. Furthermore, this equation may be used to describe
acoustic waves, microwave systems, and in particular the wavefunction of a quantal particle
inside nanoscale devices [2] such as quantum dots, where the motion of the electrons can
be regarded as a free motion within a box. For this reason it has become a prototype problem
in studies of quantum chaos.

Of particular interest are the wavefunctions �(x) of a stationary particle in a two-
dimensional box (a so-called billiard system). These wavefunctions are solutions of the
homogeneous Helmholtz equation H�(x) = 0, where the differential operator H is defined
as

H = −∇2 − k2. (1)

Note that for the special case k = 0, the Helmholtz equation reduces to Laplace’s equation.
Given a closed boundary we can ask whether this equation has a non-trivial solution that
satisfies Dirichlet boundary conditions �(x) = 0.
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Two main numerical strategies have been suggested to date in the literature in order to find
the eigenstates of the Helmholtz equation (for more comprehensive reviews and references,
see for example [3–5]). The first strategy can be described as a ‘Laplacian diagonalization’. A
basis is selected such that the functions it contains satisfy the Dirichlet boundary conditions.
For example, in some cases one can use conformal mapping to determine a basis [6] (and see
also [7]). The Laplacian operator is then written in this basis and diagonalized. Numerically,
some truncation is required, and the diagonalization only determines all the eigenstates up to
some maximum wavenumber kmax. Thus, the Laplacian diagonalization strategy is inherently
limited, and cannot be used for the purpose of finding high-lying eigenstates.

The second numerical strategy, which is the object of this paper, can be described as a
‘boundary approach’. This strategy is based on the observation that the eigenfunctions are
completely determined by their behaviour at the boundary. The boundary methods use basis
functions that satisfy the Helmholtz equation inside the billiard at fixed k. A linear combination
of the basis functions is then selected such that the boundary conditions are satisfied. Thus,
in order to find the eigenstates, one only needs to study the small k window that contains
the energy range of interest. Therefore the method is naturally suitable for the purpose of
finding high-lying eigenstates. For 2D billiards, the Laplacian diagonalization requires 2D
grid calculations. This is a heavy numerical task. The boundary approach, on the other hand
reduces the calculations to a 1D boundary grid.

In the quantum chaos community, two boundary methods are commonly employed. The
first one is referred to as the boundary integral method (BIM) [8], while the other is what we
call here the decomposition method (DEM), of which the plane-wave decomposition method
(PWDM) [9] is a special case. Extensions of the standard PWDM have been used in [10, 11]
and in [5].

Usually, the BIM and the PWDM are considered to be two independent self-contained
procedures. Several studies have been done in order to compare their capabilities [12].
While the BIM equation is exact, its convergence is very slow (power law in the number
b of discretization points per half-wavelength). On the other hand while the PWDM is
mathematically limited (e.g. the maximal b is semiclassically determined), it is still found to
be extremely efficient in practice. Hence there is definitely a need to develop hybrid boundary
methods.

In this paper, we adopt a new point of view through which we regard the BIM and the
DEM as sequences of four independent steps. By doing so, we make the observation that the
DEM and the BIM are strongly related: the two procedures are based on the diagonalization
of literally the same matrix! As a bridge between them, we will highlight an intermediate
strategy which we call the gauge freedom method (GFM). In a follow-up paper, this framework
will lead the way to improved eigenstate search techniques combining the strengths of the two
boundary methods [13].

Our unified description of the different boundary methods can be summarized by the
following set of four steps that are common to the BIM and the DEM, and as we will show
later, to the GFM:

• choice of a set of basis functions Fj (x; k);
• definition of the Fredholm matrix Ajs(k);
• procedure for construction of the wavefunction �r ;
• definition of the quantization measure S(k).

The first step consists of selecting a set of basis functions Fj (x; k) labelled j = 1, . . . , N .
All boundary methods rely on basis functions that satisfy the Helmholtz equation inside the
billiard. Thus, a superposition of such basis functions is an eigenfunction if it vanishes along
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the boundary. The choices of bases that correspond to the PWDM, to the primitive version of
the BIM and to the simplest variation of the GFM are as follows:

Fj (x; k) = cos(φj + knj · x) PWDM (2)

Fj (x; k) = Y0(k|x − xj |) Y0-BIM (3)

Fj (x; k) = J0(k|x − xj |) J0-GFM. (4)

For the purpose of numerical treatment we represent the boundary by a set of points xs

with s = 1, . . . ,M . In practice, we choose a set of M equally spaced points, so that the
spacing is �s = L/M where L is the perimeter of the billiard. Depending on the details of
the numerical strategy, the number of points along the boundary is either taken to be equal to
the number of basis functions (M = N), or it may be larger (M > N). The Fredholm matrix
is defined as

Ajs(k) ≡ Fj (xs; k). (5)

Given k, one may perform the singular value decomposition (SVD) of the matrix A. The
smallest singular value is the one which we care about. If it is a minimum at a given k, then
the billiard system is likely to have an eigenvalue at that energy.

In the third step, the left and the right eigenvectors of the smallest singular value (�s and
Cj , resp.) are used to construct a wavefunction �r through a linear transformation. We select
a grid of points Xr on which the wavefunction �r ≡ �(Xr) is calculated. In the DEM, the
left eigenvector C is used for the purpose of this construction, and the linear transformation
which is applied is

�r =
∑

j

Cj Fjr (6)

where Fjr ≡ Fj (Xr; k). Note that C contains the expansion coefficients of �(x) in the chosen
basis Fj (x; k). For the BIM, the right eigenvector � is used in order to build the wavefunction,
and the linear transformation in this case is

�r =
∑

s

Grs�s (7)

where Grs is the discretized version of the Green function. Thus, the vector �s represents a
‘charge’ that is distributed along the boundary.

In the final step, a measure S(k) is defined such that S(k) = 0 if k is an eigenvalue
and S(k) > 0 otherwise. In practice, the eigenvalues are determined by searching for the
local minima of S(k). By construction, the wavefunction which was built in the third step
satisfies the Helmholtz equation inside the boundary. Therefore, the most natural choice of
S(k) is the tension, the sum of the square of the wavefunction along the boundary. The
tension is thus a measure for the roughness of the constructed �(x) along the boundary. This
definition of S(k) is traditionally used with the PWDM. Other possibilities for the measure
include the smallest singular value, and the Fredholm determinant of A. These two latter
choices of S(k) are the ones that are usually associated with the BIM. In section 4 we discuss
the mathematical equivalence of the three possible measures, and compare their respective
numerical effectiveness.

1.1. Outline

In section 2, we give a concise presentation of the BIM and the related GFM. Our derivation
of the BIM equation contains some significant improvements over previous ones. Most
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Figure 1. Full line: the ‘pond’ shape. The polar equation of the Pond shape is r = 1 +
0.2 ∗ cos(θ + 0.9 ∗ cos(θ)). Hence its perimeter is L = 6.364. Dashed line: the cross-section
line that is used, e.g. in figure 3(c). Dots: the ‘outer boundary’ which is used for the BIM tension
calculation (see section 3.1). The transverse distance between the actual boundary and the outer
boundary was chosen in most cases to be �L ∼ 10�s. Star: the selected point which is used in
Heller’s implementation of the PWDM method.

importantly, it naturally leads to the existence of the GFM. Furthermore, we have succeeded
in avoiding the use of the complicated ‘regularized’ method of images, which was the major
ingredient in the derivation of [12].

Strategies for constructing the wavefunction are discussed in section 3. An explanation
of the Green function method is given, as well as a critical discussion of the DEM and its
numerical variants.

Section 4 explores the practicality of using different choices for the quantization measure.
In particular, it is demonstrated that a tension measure can be defined not only for the PWDM,
but for the case of the BIM as well. An important issue emerges as to whether the quantization
measures can be used to determine the error in the bulk wavefunction. We address this issue,
and also make a comparison between the numerical accuracies of the BIM and of the PWDM.

Section 5 explains how the GFM bridges the gap between the BIM and the DEM. It is
found that for any DEM, an associated GFM exists, whereas the converse statement is not
true.

The shape that we have studied numerically is presented in figure 1. We have used
the cornerless, generic ‘pond’ shape in order to avoid the range of problems that arise with
more complicated geometries. These problems are the subject of a follow-up study [13],
where we suggest mixed BIM/DEM methods for finding eigenfunctions. This is done using
the above theoretical framework, while regarding the ‘pond’ shape as a reference against which
to judge the effectiveness of our efforts. Another direction of research is related to billiards in
magnetic fields [14].

For the convenience of the reader, our numerical notation is concentrated in table 1.
Further information about figure 1, table 1 and the numerical analysis is integrated within the
main text.

2. The BIM and the GFM

The gist of the BIM is that, from the knowledge of the gradient of the wavefunction on
the boundary and from Green’s theorem, it is possible to find the value of the wavefunction
everywhere inside the billiard. We give a derivation of this method in this section. This
procedure will lead us naturally to the existence of the GFM.
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Table 1. Notation.

xs = Vector of boundary points
xs = Vector of outer-boundary points
Xr = Vector of interior grid points
X0 = Randomly selected interior point
�r = Wavefunction on the grid points
�s = Wavefunction on the boundary points
�s = ‘Charge’ along the boundary
‖�r‖ = Norm of the wavefunction (see section 3)
‖�s‖ = Tension of the wavefunction (see section 3)
n(s) = Unit normal at the boundary point xs

ws = (1/(2k2))n(s) · xs

Grs = G(Xr , xs)

Aj0 = Fj (X0; k)

Ajs = Fj (xs ; k)

Djs = ∂Fj (xs; k)

Bij = �s
∑

s wsDisDjs = �s(DwD†)ij
Tij = �s

∑
s AisAjs = �s(AA†)ij

The free space Green function G(x, x ′) is defined by the equation HG(x, x ′) = δ(x −x ′).
The most general solution can be written as

G(x, x ′) = − 1
4Y0(k|x − x ′|) + C(x, x ′) (8)

where C(x, x ′) is any solution of the homogeneous equation HC(x, x ′) = 0. Note that in the
electrostatic limit k → 0 we have G(x, x ′) = −(1/(2π)) ln(r) + C, where C is a constant4.
We shall refer to the choice of C(x, x ′) as gauge freedom. This term is at the core of the GFM.

By the definition of the Green function, it follows that a solution of the generalized
Poisson–Laplace (GPL) equation H�(x) = ρ(x) is5

�(x) =
∫

G(x, x ′)ρ(x ′) dx ′. (9)

We refer to ρ(x) as the ‘charge density’, in analogy with its electrostatic equivalent.
We shall use the notation �(s) in order to refer to the (surface) charge density upon the

boundary. In the latter case, the above equation reduces to

�(x) =
∮

G(x, x(s))�(s) ds (10)

where s parametrizes the boundary.

2.1. The BIM

Let us assume that k is an eigenvalue of the billiard. In such a case, there exists a non-vanishing
�(x) inside the boundary that satisfies �(x) = 0 on the boundary. It can be shown from
Green’s theorem that the interior wavefunction satisfies equation (10) with

�(s) = ∂−�(x(s)) ≡ lim
x↑x(s)

n(s) · ∇�(x) (11)

where n(s) is the outward pointing normal at point s, and ∂− is used for the normal derivative
evaluated inside the billiard walls.
4 We assume here the usual free space boundary conditions used in electrostatics.
5 Note that equation (9) always gives ‘a solution’ of the GPL equation. This is true irrespective of the choice of
boundary conditions and Green function.
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Figure 2. The eigenvectors of the Fredholm matrix (equation (5)) are found for k = kn =
6.827 545 928 676 94. Right plot: the right eigenvector �. The symbols (×) and (+) and
(◦) correspond respectively to the PWDM choice of equation (2), to the H1-BIM choice of
equation (B.3) and to the J0-GFM choice of equation (4). Left plot: the left eigenvector C for the
PWDM Fredholm matrix.

In electrostatics, it is known that forcing the scalar potential to be zero on the boundary
induces a boundary charge. From Green’s theorem, the induced charge is proportional to the
normal component of the electric field. Here the wavefunction acts as the equivalent of the
scalar potential. Similar to the electrostatic case, there exists an induced ‘boundary charge’,
which in this case is proportional to the normal derivative of the wavefunction.

The BIM is based on the fact that if an eigenstate exists, then there also exists a charge
density �(s) given by equation (11), such that equation (10) is satisfied. On the boundary,
equation (10) yields∫

G(x(j), x(s))�(s) ds = 0 (BIM equation). (12)

Thus, having an eigenstate �(x) implies that the kernel G(x(j), x(s)) has an eigenvector
�(s) that corresponds to a zero eigenvalue. Figure 2 shows an example of a boundary charge
density �(s) that was found via the BIM equation (for more details, see the next section). The
converse is also true: once a non-trivial charge density is found that satisfies equation (12),
the associated eigenstate can be constructed using equation (10). We discuss this construction
issue in more detail in the next section.

For numerical purposes, it is convenient to use the discretized version equation (7) of the
above formula. The BIM equation can then be written as the matrix equation A� = 0, where
Ajs = G(x(j), x(s)). The gauge term C(x, x ′) allows some freedom in the determination of
the Green function. Using the Neumann–Bessel function Y0(k|x −x ′|) for the Green function,
one obtains the matrix Ajs as defined by equation (5) with (3). Another possibility is to use the
Hankel–Bessel function H0(k|x −x ′|). Accordingly, we will distinguish between the Y0-BIM
version and the H0-BIM version. We shall later discuss the numerical implication of using
the complex H(k|x − x ′|) rather than the real Y (k|x − x ′|).

The primitive BIM uses equation (12) literally. However, this version of the BIM is not the
one that is generally favoured because G(x(j), x(s)) is singular for x(j) → x(s), leading to
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some difficulty in determining the diagonal matrix elements of Ajs . Therefore, other versions
of the BIM have become popular (see appendices B and C).

2.2. The GFM

The GFM is a different strategy to obtain the charge density �(s). Rather than using the BIM
equation (12) or one of its variants, a gauge freedom argument is invoked in order to introduce
a new type of equation (equation (13)). It is clear that equation (12) should be valid for any
choice of gauge. In other words, equation (12) should be satisfied for any Green function
(equation (8)), regardless of the choice of C(x, x ′). Thus, for a given C(x, x ′), the charge
density �(s) must satisfy the equation∫

C(x(j), x(s))�(s) ds = 0 (GFM equation). (13)

For example, we may take C(x, x ′) = J0(k|x − x ′|), and we shall refer to this version of
GFM as J0-GFM. For numerical purposes, it is once again convenient to discretize the integral
expression, which can then be written as the matrix equation A� = 0.

The kernel Ajs = J0(k|x − x ′|) of the J0-GFM is non-singular, and very well behaved.
Thus, the J0-GFM method, unlike the Y0-BIM, provides an extremely convenient way of
obtaining the eigenvalues of the Helmholtz equation. Figure 2 shows an example of a charge
density that was found via the J0-GFM equation (for more details, see the next section).
The result is indistinguishable from the charge density generated by the traditional H1-BIM.
(We note however that the J0-GFM method has certain numerical limitations that we are going
to discuss later.) Once the eigenvector �(s) is found via the GFM equation, we can proceed
as with the traditional BIM, and construct the wavefunction �(x) using equation (7).

3. Constructing the wavefunction

In this section we explain how a wavefunction �(x) is constructed for a given k. It is assumed
that k is an eigenvalue. The (numerical) question of how to determine the eigenvalues k = kn

is deferred to section 4.

3.1. Green function method (equation (7))

Both the BIM and GFM make use of equation (7) in order to construct the wavefunction. In
order to find the charge vector �s the BIM equation (equation (12)) and the GFM equation
(equation (13)) are written as the matrix equation A� = 0. The only difference between the
two is in the expression for A. Given k, one performs the SVD of the matrix A. Figure 4
shows an example of the output of such a SVD procedure. One then finds the right eigenvector
� that corresponds to the smallest singular value.

Once the charge vector �s has been determined, as in the example of figure 2, one can
construct the wavefunction using equation (7). For the Green function (8), it is most natural
to use the simplest gauge (C = 0). If k is known to be an eigenvalue, then any gauge should
give the same result, and in particular, the wavefunction associated with any complex part of
the Green function (such as that of the Hankel function) should vanish. The outcome of the
Green function method is illustrated in figure 3.

It is natural to ask how the constructed wavefunction �(x) looks like outside the
boundary. The answer turns out to be �(x) = 0. For completeness, we give a proof of
this statement. Let us define an extended function �ex(x) such that �ex(x) = �(x) inside
and �ex(x) = 0 outside the boundary. We would like to show that �(x) as defined by
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Figure 3. The eigenfunction at k = kn is found using the eigenvectors of figure 2. (a) An image
of �(x) using equation (7). (b) The same using PWDM and equation (6). (c) Plot of �(x) along
the cross-section line of figure 1. The vertical lines indicate the location of the boundary. The
wavefunctions that correspond to images (a) and (b) are shown with (+) and (×), respectively. We
also show with (◦) the wavefunction that is obtained using J0-GFM and equation (6). (d)–( f ) Plots
of log(|�(x)|2) along the boundary. The symbols are as in (c).

equation (10) is also equal to �ex(x) outside the boundary. It is clear that �(x) is a solution
of the GPL equation by construction (see the discussion following equation (9)). In the next
paragraph, we argue that �ex(x) is a solution of the same GPL equation. It follows that the
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difference R(x) = �(x)−�ex(x) is a solution of the Helmholtz equation in free space. From
the definition of �ex(x), we have R(x) = 0 in the interior region, which implies by the unique
continuation property that R(x) = 0 over all space.

The proof that �ex(x) is a solution of the GPL equation with a charge density given by
equation (11) goes as follows. By construction, �ex(x) satisfies the GPL equation inside as
well as outside the boundary. All we have to show is that it also satisfies the GPL equation
across the boundary. The latter statement is most easily established by invoking Gauss’s law.
This approach is valid because at short distances, G(x, x ′) coincides with the electrostatic
Green function. Thus, the gradient of �ex(x) corresponds, up to a sign, to the electric field.
Gauss’s law implies that the electric field should have a discontinuity equal to the charge
density �(s). Indeed, �ex(x) is consistent with this requirement.

3.2. Decomposition method (equation (6))

The other procedure for constructing the wavefunction is to use the DEM equation (6). The
idea is to regard Fj (x; k) as a basis for the expansion

�(x) ≈
∑

j

CjFj (x; k). (14)

Any such superposition at fixed k is a solution of the Helmholtz equation within the interior
region. Thus, in order to satisfy the Dirichlet boundary conditions, one looks for a vector
C of expansion coefficients that satisfy CA = 0. It turns out that the direct numerical
implementation of this simple idea is a complicated issue (see the discussion of the null-space
problem later in this section).

Any set of Fj (x; k) which are solutions of the Helmholtz equation may be used for the
DEM. However, it should be remembered that computationally not all bases are equivalent.
For instance, the Y0 basis defined by equation (3), which might appear to be the best choice
as a DEM basis due to its association with the BIM, does not give the best numerical results
when compared against other options. In particular, it turns out that the PWDM is typically
much more effective (recall that the PWDM is a special case of the DEM, corresponding to
the choice (2) of basis functions). Finally we note that the set of J0 of equation (4) cannot be
regarded as a mathematically legitimate basis for a DEM. This latter point will be explained
in section 5.

For the Y0 basis the BIM and the DEM lead to the same equation. It is only the
mathematical interpretation that is different. Within the DEM, one regards the Y0 as basis
functions to be used in an expansion, while the same Y0 in the BIM context serves as the
Green function. In the context of DEM, one may be bothered by the singular nature of the
Y0 functions: the constructed wavefunction should be zero on the boundary. Mathematically
this is achieved in the N → ∞ limit, so the Y0 basis is a valid choice. But in an actual
numerical implementation, the wavefunction so constructed will always have singularities
on the boundary. One possible remedy consists of enforcing the boundary conditions on
intermediate boundary points, or on points that lie on an outer boundary. Alternatively, one
may replace the bare Y0 basis by smooth superpositions of Y0 functions (see appendix C).

In figure 2, we show an example of a numerically determined C (using the PWDM basis)
for one of the pond eigenstates, while in figure 3 we illustrate the constructed wavefunction.
Unlike the Green function construction, the DEM/PWDM constructed wavefunction does not
vanish outside the boundary. Actually, it is quite the opposite: typically the DEM/PWDM
wavefunction becomes exponentially large as we go further away from the boundary.
Whenever this behaviour occurs, it constitutes an indication of the evanescent nature of
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the wavefunction. Namely, in such cases, the wavefunction acquires sub-wavelength features
in order to accommodate the boundary. This requires exponential behaviour (negative kinetic
energy) in the transverse space direction, in order to keep the total energy fixed.

3.3. Normalization of the wavefunction

A standard SVD procedure generates vectors �s and Cj that are normalized in the sense∑
s |�s |2 = 1 and

∑
j |Cj |2 = 1. Therefore, the constructed �r is not properly normalized

within the interior region. Adopting the usual philosophy of boundary methods, the problem
of calculating the �r normalization is reduced to that of evaluating a boundary integral, namely
[8, 18] ∫ ∫

|�(x)|2 dx = 1

2k2

∮
|�(s)|2(n(s) · x(s)) ds. (15)

For the BIM, by discretizing equation (15) we obtain the following numerical expression for
the normalization factor:

‖�r‖ = 1

�s

∑
s

ws(�s)
2 = �†W�. (16)

Here W = (1/�s) diag(ws) is a diagonal matrix, and the weight factor ws is defined in
table 1. As for the DEM, by using the derivative of equation (14) in equation (11) and
substituting into equation (15), we get

‖�r‖ = �s
∑

s

ws


∑

j

Cj Djs




2

(17)

=
∑
ij

CiBij Cj = CBC†. (18)

The definitions of Djs and of the metric Bij can be found in table 1.
The normalization ‖�r‖ can be calculated using the metric Bij . This method looks quite

elegant, but it does not turn out to be very effective numerically. Consider equation (17). This
equation is quite safe computationally for two reasons: (i) all its terms are non-negative; (ii)
standard summation routines order these terms in descending order. Now, let us look instead
at equation (18). In this case the numerical calculation can give any result (if we go to large k).
Sometimes, the answer even comes out to be negative! This occurs because the calculation
involves many arbitrarily ordered terms that each has a different algebraic sign.

3.4. The tension along the boundary

The numerical wavefunction �r satisfies the Helmholtz equation in the interior region by
construction. Thus, whether �r is an actual eigenstate depends on its behaviour along the
boundary. In this subsection we discuss the definition of a ‘tension’ measure that estimates
whether, and to what accuracy, the numerical �r satisfies the boundary conditions.

For the case of the DEM, following [9], the tension is defined as the boundary integral

‖�s‖ = �s
∑

s


∑

j

Cj Ajs




2

=
∑
ij

CiTij Cj = CTC†. (19)

The standard practice to date for the tension calculation has been to use a denser set of boundary
points located between the xs points. However, our experience (see also [5]) is that the tension
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Figure 4. Singular values of the Fredholm matrix for kn = 6.827 545 928 676 94 (left plot) and
for kn = 50.054 749 120 044 08 (right plot). The various symbols are as in figure 2.

estimate obtained from the initial set of points is just as effective. This is demonstrated in
figure 3(d). Therefore, we routinely rely on the same set of boundary points to determine the
tension.

For the BIM on the other hand, the above definition is not practical due to the singular
nature of the basis functions. For any finite M, the numerical wavefunction blows up at
each boundary point. However, since the BIM wavefunction vanishes everywhere outside the
billiard, a numerically unambiguous definition of tension arises as an integral of |�(x)|2 along
an outer boundary:

‖�s‖ = �s
∑

s

(�s)
2 = �s

∑
s

(∑
s

Gss�s

)2

. (20)

By outer boundary (see figure 1), we mean the set of external points (s points, as opposed
to s points for the true boundary) that have a fixed transverse distance �L from the true
boundary. The distance �L between the boundary and the outer boundary should be small on
any classical scale but large compared with ds, in order for the tension to be independent of
the choice of �L. See figure 5(c) for a numerical demonstration.

3.5. The PWDM and the null-space problem

One may think that C could be found simply by computing the (left) eigenvector that
corresponds to the smallest singular value of Ajs . Numerically this definition is hard to
implement. This difficulty can be explained by looking at the behaviour of the singular values
of Ajs for the PWDM basis. Figure 4 gives some examples of singular values resulting from
the SVD of the Ajs matrix. In the case of the PWDM, as k become large, one observes that
the singular values separate into two groups: rather than having one distinctly smaller singular
value, we obtain a whole set of them. Accordingly, we can define a numerical ‘null space’ of
the Ajs matrix.
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The interpretation of this null space is quite clear. It is well known [19, 20] that it is not
efficient to include much more than Nsc plane waves in the basis set Fj (x; k), where

Nsc = 1

π
kL (21)

and L is the perimeter of the billiard. The reason for this ineffectiveness is that ki and kj

cannot be distinguished numerically within the interior region unless |ki − kj |L > 1. In order
to obtain the semiclassical result (21), the total phase space area (L × (2mv)) of the boundary
Poincaré section is divided by the size of the Planck cell (2πh̄). If we use N > Nsc plane
waves, then we can create wavefunctions that are nearly zero in the interior, and become large
only as we go far away from the centre [21]. It is clear that the SVD can be used to determine
the N − Nsc null space of these evanescent states. Whenever k is an eigenvalue, this null
space includes, in addition to the evanescent waves, the single eigenvector that constitutes an
eigenstate of the Helmholtz equation. The problem is to distinguish this eigenvector from the
other vectors in the null space.

The basic difference between the eigenvector that leads to an eigenstate (which exists if
k = kn), and the other vectors in the null space is related to the normalization. As discussed
before, a standard SVD procedure generates vectors Cj that are normalized in the sense∑

j |Cj |2 = 1. Therefore, the �r of equation (6) is not properly normalized within the interior
region. Normalizing the wavefunction has the effect of magnifying the evanescent solutions
in the interior as well as on the boundary, while the eigenfunction (if it exists) remains small
on the boundary. In appendix D, we give a detailed explanation of the numerical procedure
for finding Cj that can be derived from the above observation.

4. The quantization measure

Once we have constructed the wavefunction at a given k, the next step is to determine whether
� is an eigenstate. As we will explain below, our choice of measures reduces to finding the
minima of one of

S(k) = tension (22)

S(k) = smallest singular value (23)

S(k) = determinant. (24)

We call S(k) the quantization measure. Below we give further explanation of the above
definitions.

It is clear that the most natural quantization measure is the tension. If a properly normalized
wavefunction has ‘zero tension’ on the boundary, it means that the corresponding k is an
eigenvalue. The normalization issue is further discussed in appendix D. The question that
arises is whether we can use a numerically simpler measure, and what price we pay for
doing so.

The BIM equation (12) and the GFM equation (13) can both be written as A� = 0, with
the appropriate choice of A. Thus, if k is an eigenvalue, A should have a singular value that
tends to 0 as N increases. The determinant of A is defined as the product of all the singular
values, and therefore it should vanish whenever one of the singular values does. Using the
GFM–DEM duality which is discussed in section 5, it is clear that for the DEM (and for
the PWDM in particular) the determinant of A vanishes whenever k is an eigenvalue. It is
important to realize that in the latter argumentation, we do not rely on inside–outside duality
[20] considerations, but rather on the much simpler GFM–DEM duality.
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Thus, a low tension must be correlated with having a vanishingly small singular value
or determinant. The converse is not true: it is well known that SVD based quantization
measures may lead to spurious minima (see [4] and references therein). Therefore the SVD
based procedure for finding eigenvalues requires a post-selection procedure whose aim is to
distinguish true zeros from fake ones.

It is important to realize that neither the traditional implementation of PWDM, nor that
of the BIM should be considered to be ‘package deals’. For example, the BIM could be used
with the tension as a measure (defined in the next section), rather than looking for minima
of the singular values. Similarly, the usual Heller method of PWDM implementation (see
appendix D) could be replaced by a search over determinant values.

4.1. The tension as a quantization measure

The tension is a robust measure of quantization. Figure 5 shows some examples of the
corresponding S(k) plots. The PWDM minima are typically much sharper than their BIM
equivalents. Zooming over a PWDM minimum (figure 5(d )) reveals some amount of
roughness. This feature is actually helpful, because it gives an indication of and control
over the accuracy of the numerics. We interpret the roughness of the PWDM minimum as
a reflection of the existence of a null space. In the same spirit, the smoothness of the BIM
minima can be regarded as an indication that better accuracy can be obtained by making N
larger. We discuss these issues below.

The tension provides a common measure that may be used to monitor improvements, as
well as to compare the success of the different methods. Naturally, the first issue to discuss is
the dependence of the tension on the size N of the basis set (see figure 6). For the BIM, the
tension becomes better as N increases, and disregarding the computer hardware, there is no
reason to suspect that there is an inherent limitation on the accuracy. The situation is different
for the PWDM. Here, taking N much larger than Nsc is not effective. In practice, the method
reaches a limiting accuracy, which, taking into account present hardware limitations, is still
very good compared with that of the BIM.

From figure 6, it is also clear that the tension of the PWDM becomes much better as k
becomes larger. This is expected on the basis of the following semiclassical reasoning: larger
uncertainties in k result from confining a particle to a smaller box (taking a smaller box for a
given k is equivalent to making k smaller for a given box size). Thus, it is more difficult to
build a wavefunction with a precise value of |kj | = k for low-lying eigenstates. On the other
hand, the BIM does not seem to be sensitive to the value of k.

4.2. The tension as an indication for the global error

The tension can be regarded as a measure of the local error in the determination of the
eigenfunction. The tension is local in the sense that it pertains only to points along the
boundary. We can also define a measure for the global error, that is the error which is
associated with all the interior points:

(��)2 = 〈|�r − �exact(Xr)|2〉. (25)

Here �exact(x) is the numerically exact wavefunction. The average is taken over the set Xr

of selected points inside the boundary. Figure 7 shows an example of the variation of the
error along the cross-section line of figure 1. In order to eliminate a possible bias due to a
global normalization error, we renormalized the inexact wavefunction so that �r = �exact(Xr)

at a randomly selected point X = X0. In retrospect, we realized that such an error did not
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Figure 5. The tension as a function of k in the vicinity of kn = 10.147 079 715 172 64 (panels
(a), (c) and (d)), and of kn = 50.054 749 120 044 08 (panel (b)). In the upper panels ((a) and
(b)) the full line is for the PWDM constructed wavefunction, while the dashed line is for the BIM
constructed wavefunction. For the low-k state we chose b = 4, while for the high k we used b = 2.
Panel (c) demonstrates the dependence of the BIM tension on the choice of the distance �L. The
different curves (from the upper to lower) correspond to �L/�s = 1, 8, 16, 12, 4. Panel (d) is a
zoom over the PWDM minimum.

significantly affect the result. However, we still chose to be on the safe side, and we adopted
this procedure routinely.

It is natural to expect the average error (��)2 to be correlated with the tension. In other
words, if |�r − �exact(Xr)| is small on the boundary, then one may expect it to be small in
the interior. The degree of such correlation is important for practical reasons. Moreover, we
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Figure 6. The tension for the constructed eigenstate versus the number N of basis functions.
The left plot is for the kn = 2.404 256 577 923 91 eigenstate, and the right plot is for the
kn = 6.827 545 928 676 94 eigenstate. The symbols (◦) and (+) are for the BIM and for the
PWDM, respectively.
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Figure 7. Plot of the error |�r − �exact(Xr )|2, along the cross-section line of figure 1. We refer
here to the kn = 6.827 545 928 676 94 eigenfunction. The numerically ‘exact’ wavefunction is
our best PWDM constructed wavefunction (N = 69) with tension = 10−13. The ‘non-exact’
wavefunction is either BIM constructed (+) or PWDM constructed (×), with tension ≈10−8. In
the middle point the error is zero by construction (see explanation in the text).

have introduced two different versions of tension definitions, one for each of the PWDM and
the BIM. It is not a priori clear that the above correlation is independent of the choice of
the numerical method. In figure 8, we study this issue by plotting (��)2 against the tension
for the BIM and the PWDM. In the case of the PWDM, the error saturates below a critical
tension. After this point, further improvements on the boundary do not seem to affect the bulk
of the eigenstate. It is not clear from the numerics whether or not the BIM saturates. What
is clear however is that the BIM does a poorer job at reproducing the wavefunction inside the
boundary than the PWDM with the same tension.

The saturation of the error well inside the billiard can be explained as a manifestation of
the fact that the wavefunction there is not very sensitive to the sub-wavelength roughness of
the boundary: if N is reasonably large, the numerical wavefunction vanishes on a nodal line
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Figure 8. The average error in the determination of the wavefunction, versus the tension for the
kn = 6.827 545 928 676 94 eigenfunction. For the BIM constructed wavefunction we use squares
and (◦), while for the PWDM one we use (+) and (×). The error has been determined with
respect to the ‘exact’ wavefunction �exact. The latter is numerically defined as either the best BIM
eigenstate (squares and (+)) or as the best PWDM one ((◦) and (×)). For both choices �exact had
a tension better than 10−10.

that almost coincides with the true (predefined) boundary. Increasing N further affects the sub-
wavelength features of the (distance) difference between that nodal line and the true boundary.
This distance difference is important for the tension, but barely affects the wavefunction well
inside the billiard.

4.3. The determinant as a quantization measure

The tension is the natural choice for a quantization measure. However, from a numerical point
of view, it is much more convenient and time effective to compute the singular values of A,
without having to find the eigenvectors for each k value, and without having to compute the
wavefunction along the boundary (for tension calculation).

The smallest singular value is traditionally used as a quantization measure for the BIM.
From figure 7, it is quite clear that for the BIM one of the singular values is significantly
smaller than the others, so that the eigenstate is unambiguously determined by this method.
Is it possible to use the same approach, with comparable success, for the PWDM? We
have already determined that looking at the smallest singular values is not very meaningful
numerically. For N > Nsc, there exists a large null space of evanescent states for any k.
The metric method (appendix D) is not a practical solution to this problem since we want to
gain numerical efficiency (if efficiency is not the issue then it is better to use the tension as a
quantization measure).

One simple way to improve the numerical stability is to use the determinant rather than
the smallest singular value as a quantization measure: each time that k = kn, the null space
should include one more ‘dimension’. Therefore, the determinant, rather than the smallest
singular value, becomes the reasonable quantity to look at. Thus, from the numerical point of
view (23) should be superior compared with (22).

Figure 9 illustrates how the determinant can be used in practice as a quantization measure.
As a general rule, as is the case for the tension, the PWDM/GFM minima are sharper than the
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Figure 9. The Fredholm determinant (S(k)) versus k in the vicinity of kn = 10.147 079 715 172 64.
Note that S(k) is normalized such that S(k) = 1 away from the minima. Panels (a)–(c) show S(k)

in the cases of the H1-BIM, the Y1-BIM and the PWDM, respectively. The lines plotted, in the
order of decreasing S(k) minimum, correspond to b = 2, 3, 4, 8 in panel (a), b = 4, 8, 13, 12 in
panel (b) and b = 2 in panel (c). The PWDM run in panel (c) was repeated three times with
different values of the randomly chosen plane-wave phases. Panels (d) and (e) give a zoom over
the minima of panels (a) and (c), respectively. We witness some numerical instabilities for both
the Y1-BIM and the PWDM, though in the latter case it is much much weaker, and can be resolved
only in the zoomed plot (panel (e)). For larger b values, the PWDM instability is enhanced, and
the results are reduced to numerical garbage (not shown).

BIM ones. On the one hand, this extra sharpness can be regarded as an advantage, because
it leads to a better resolution of the eigenvalue spectrum. However, more computer time is
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needed in order to find these minima. The BIM minima are broader, and therefore digging
algorithms that search for local minima become extremely effective.

In the case of the traditional BIM, using a larger N leads to a better resolution of the local
minima, as expected. The traditional H-BIM uses the complex Hankel–Bessel function as its
Green function. One may wonder why the real Neumann function could not be used instead.
A priori, there is no reason to insist on Hankel choice. However, it seems that with Neumann
choice the numerics are not very stable: the locations of the local minima vary on a k range
which is large compared to their k width. Because of this problem, search routines relying
on the Y-BIM may yield misleading values for the error in the kn determination. Thus, the
numerical stability of the H-BIM can be attributed to the fact that the BIM equation A� = 0
becomes complex. Its real part is just the Y-BIM equation, while its imaginary part is the
J-GFM equation. Thus one may say that the H-BIM benefits from combining the Y-BIM with
the J-GFM.

Is it practical to use the Fredholm determinant as a quantization measure also in the
GFM/PWDM case? Here we observe that the null-space problem is reflected in the stability
of the determinant calculation. It is useful to characterize the numerics using the discretization
parameter b:

b = N

Nsc
=

∣∣∣∣
M=N

λ/2

�s
. (26)

The last equality holds if we take M = N , leading to the interpretation of b as the number
of boundary points per half de Broglie wavelength. If b < 1 the null-space problem does not
exist, and we can define C as the (left) eigenvector that corresponds to the smallest singular
value of Ajs . Of course, we want to push PWDM to the limit, and therefore in practice we
always take b > 1.

The natural question is whether choosing a very large b is numerically useful. Our
numerical experience is that for 1 < b < 1.8 we get nice minima, which actually look much
sharper than the BIM ones (see figure 9). As we try to increase b in order to improve accuracy,
the numerics lose stability (what we mean by instability is demonstrated in figure 9(e)). The
same phenomenon occurs with J0-GFM, which has a somewhat larger tendency for instability.
This is apparently because the J0-GFM is involved with a larger null space (see figure 4).

Thus we conclude that taking b > 1 does improve the numerics, while b � 1 generally
leads to instabilities that should be avoided. The optimal choice of b depends on the details
of the implementation and on the computer hardware. It should be clear that if the numerical
accuracy were unlimited, then the b → ∞ limit would lead to a numerically exact solution
in cases where the wavefunctions may be written as superpositions of plane waves. This is
not always possible [17]. Note however that evanescent features of the wavefunction can be
reconstructed by a suitable superposition of plane waves [21].

5. The duality of the GFM and the DEM

In addition to providing a boundary method of its own, the GFM also serves to bridge the gap
between the BIM and the DEM. Consider the version of the GFM that is based on the choice
C(x, x ′) = Fj (x; k), where the Fj are solutions of the Helmholtz equation in free space (with
neither singularities nor cuts). With this choice, we immediately realize that the DEM and the
GFM are dual methods:

A� = 0 (GFM equation) (27)

CA = 0 (DEM equation). (28)
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The only difference lies in whether one looks for the left or the right eigenvector. This point
is numerically demonstrated in figure 2.

The PWDM version of the DEM also satisfies this duality. In this special case, a somewhat
more elegant version of the above argument is as follows. Consider the version of the GFM
that is based on the choice C(x, x ′) = exp(iknj · (x − x ′)), where nj is a unit vector in a given
direction. We can take N different choices of nj , thus obtaining the matrix equation A� = 0
with

Ajs = exp(iknj · xs). (29)

An equivalent matrix equation is found by multiplying each equation by exp(ikφj ), where φj

are random phases. We can then take the real part of these equations, thus obtaining a set of
equations that involves the same matrix A as that of PWDM, namely (5) with the basis defined
by (2).

The duality of the PWDM and the GFM is very important from a mathematical point of
view. The mathematical foundations of the PWDM are quite shaky. It is clear that PWDM
is well established mathematically if a strict ‘inside–outside duality’ (IOD) [20] is satisfied.
In this case, the wavefunction can be extended to the whole plane so that the boundary of
the billiard can be regarded as a nodal line of some plane-wave superposition. Obviously,
this is rarely possible [21]. Therefore, one may wonder whether we indeed have det(A) = 0
whenever k = kn. Using the duality (27), it becomes obvious that the Fredholm determinant
indeed vanishes at the eigenstates, even in the absence of an exact IOD.

It is quite clear from the first paragraph of this section that any expansion method can be
associated with a corresponding GFM. Whenever the left eigenvector is used with the expansion
method, the right eigenvector can be used with the GFM. We have already demonstrated this
point in figure 2. Is it possible to make the inverse statement? Do we have a well-defined
expansion method associated with any GFM? The answer is negative. We discuss this issue
in the rest of this section, and it can be skipped at first reading.

For the following, it is convenient to consider equation (6) as N → ∞. Subsequently, we
are going to talk about whether this limit is meaningful. In the case of the usual PWDM, the
N → ∞ limit of equation (6) can be written as

�(x) =
∫ 2π

0
C(θ) dθ exp(ikn(θ) · x). (30)

Similarly, in the case of the J0 decomposition, using the basis functions of equation (4), we
can write by complete analogy

�(x) =
∮

�(s) dsJ0(k|x − x(s)|). (31)

In writing equation (31) we have used the fact that J0(x(j) − x(s)) is a symmetric kernel,
and therefore we could make the substitution C = �. Equation (31) looks at first sight like
an innocent variation of equation (30). The Bessel function J0 is just a superposition of plane
waves, and therefore one may possess the (incorrect) idea that there is a simple way to go
from equation (31) to equation (30). If we expand each J0 in equation (31) in plane waves,
and rearrange the expression in order to identify the PWDM coefficients, we end up with the
relation

C(θ) =
∫

e−ikn(θ)·x(s)�(s) ds. (32)

This relation implies the trivial result C(θ) = 0 due to gauge freedom (see the discussion of
equation (29)). Hence we conclude that the constructed wavefunction is �(x) ≡ 0 in the
N → ∞ limit!
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Having �(x) ≡ 0 from equation (31) could have been anticipated using a simpler
argument. We know that equation (10) should hold for any gauge choice. This gauge freedom
implies that we have∮

C(x, x(s))�(s) ds = 0. (33)

The above equation should hold for any x inside as well as on the boundary. Furthermore,
the left-hand side of (33) is manifestly a solution of Helmholtz equation in free space, and it
follows from the unique continuation property that equation (33) holds also for points outside
the boundary. Having �(x) = 0 as a result of the integration in equation (31) is just a particular
case of equation (33).

In spite of the observation that equation (31) yields �(x) ≡ 0 in the N → ∞ limit, the
vector �r is non-zero numerically for any finite N. In fact, after proper renormalization, �r

becomes a quite good approximation to the wavefunction (see figures 3(c) and (e)). Sometimes
the result so obtained is even better than the one which is found via the traditional BIM
equation (7). As strange as it sounds, this success is entirely due to the fact that we are using
finite N.

6. Conclusion

The BIM and the DEM were written as different faces of a unified boundary procedure
comprising four steps. In the process of doing so, yet a third boundary method was derived as
part of the same framework, the GFM. The DEM and the GFM are strongly related, as they
are respectively the left and the right eigenvectors of the same Fredholm matrix. We think that
the presented approach opens the way towards a controlled fusion of the BIM and the DEM
into a more powerful numerical procedure.

The unified treatment of quantization measures allowed us to compare the efficiency of
the various methods, and to analyse both the local and the global errors in the numerically
determined wavefunction. In particular, a numerically valid definition of the BIM tension was
given, and was found to possess smooth minima at the eigenstates. Using the tension as a
quantization measure is one possible way to avoid some problems [4] that are encountered in
the traditional implementation of the BIM.
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Appendix A. The BIM for the scattering problem

The solution of the Helmholtz equation for the scattering problem is just another variation of
the BIM. Consider a boundary, one that in general may be composed of several disconnected
pieces. The incident wave �incident(x) is a solution of Helmholtz equation in free space.
Formally, �incident(x) includes both the ingoing and the outgoing wave components. We look
for a solution �(x) that has the same ingoing component as �incident(x), and that satisfies



Consolidating boundary methods for finding the eigenstates of billiards 2159

�(x) = 0 on the boundary. Such a solution can be written as a sum of the incident wave and
a scattered wave, and hence must be of the form

�(x) = �incident(x) +
∮

G(x, x(s ′))�(s ′) ds. (A.1)

Equation (A.1) is a variation of equation (10). Note that the Green function should satisfy
outgoing boundary conditions in order to yield the desired solution. The charge density �(s)

is fixed by the requirement that �(x) = 0, which leads to the boundary equation∮
G(x(s), x(s ′))�(s ′) ds = −�incident(s). (A.2)

This inhomogeneous equation is a straightforward generalization of equation (12). A
discretized version of it was used in [22] in order to obtain numerical solutions of the Helmholtz
equation for some scattering problems.

The derivation of equation (A.2) in [22] is much more complicated than ours, and involves
the use of the Lippmann–Schwinger equation. The boundary is represented by a large delta
potential V , and the limit V → ∞ is taken. Using this procedure, the charge density �(s)

can be obtained as the V → ∞ limit of V �(x(s)). Note the correctness of the physical units.
Namely, [H][�] = [ρ] and therefore [V ][�] = [�]. Note also that the wavefunction is in
general non-zero in both sides of the boundary. Therefore the charge density �(s) is equal to
the difference between the normal derivatives on both sides of the boundary. The simplest way
to derive the relation between �(s) and V �(x(s)) is to integrate the Helmholtz equation over
an infinitesimal range across the boundary, as in the treatment of the 1D Schrödinger equation
with delta potential.

Appendix B. Traditional BIM equation

The primitive BIM equation (equation (12)) is based on equation (10). The traditional BIM
is a variation of the same idea which avoids the boundary singularities that plague the more
simplistic version. Rather than using equation (10) directly, one considers its gradient, leading
to

∂±�(x(s)) =
∮

∂±G(x(s), x(s ′))�(s ′) ds ′. (B.1)

This equation is analogous to equation (12). We use the notation ∂+ and ∂− in order to refer
to the normal derivative on the interior and exterior sides of the boundary. By definition,
∂−�(x(s)) = �(s), and from the discussion in section 3 we have ∂+�(x(s)) = 0. Adding the
two equations of (B.1), we obtain

�(x(s)) =
∮

2∂G(x(s), x(s ′))�(s ′) ds ′ (B.2)

where ∂ ≡ (∂+ + ∂−)/2 is just the derivative on the boundary in the principal sense. Thus, in
the traditional BIM, the definition of the Fredholm matrix is

Ass ′ = 1

�s
δss ′ − 2∂G(x(s), x(s ′)) (B.3)

and the BIM equation (B.2) is A� = 0. The kernel ∂G(x(s), x(s ′)) is well behaved, and
its diagonal elements are finite thanks to the presence of a geometrical factor. Namely, if
G(x(s), x(s ′)) = g(k|x(s) − x(s ′)|) then

∂G = k
n(s) · (x(s) − x(s ′))

|x(s) − x(s ′)| g′(k|x(s) − x(s ′)|). (B.4)
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If either one of the Bessel functions H0 or Y0 is used for the Green function, then the definition
of Ass ′ above involves either H1 or Y1, respectively.

Appendix C. Transformed BIM equations

There exists another elegant version of the BIM [14–16] which does not exhibit the singularities
associated with the Y0-BIM. Namely, the BIM equation is rewritten as∫

G̃(x(j), κ)�̃(κ) dκ = 0 (C.1)

where the vector �̃(κ) is related by a linear transformation to the vector �(s). This
transformation corresponds to the selection of a complete basis set of boundary wavefunctions.
The KKR method [16] is a particular implementation which uses the spherical harmonics.
Another (more general) choice [14, 15] consists of taking �̃(κ) as the Fourier components of
�(s). In the latter case G̃ is related to G by the Fourier transform s �→ κ . However, obtaining
G̃ from G is not simple for most boundary shapes.

Appendix D. The PWDM, in practice

The mathematically clean solution for the null-space problem is to adopt a method based
on a metric. As we explain in the next paragraph, this procedure is sensitive to cumulative
numerical errors. A modified implementation of the metric method, which avoids some of
the numerical problems, has been introduced by Barnett [5]. The other possibility is to use a
very simple procedure which is known as Heller’s method [9]. Below we discuss the latter as
well.

The metric method works as follows. First, one finds the basis in which the normalization
metric Bij becomes δij . The tension metric Tij should then be written in that same basis.
The SVD is done on the transformed tension metric. In this case, the null space becomes
at most one dimensional (whenever k = kn). Unfortunately, this elegant and straightforward
metric scheme does not work very well, due to the finite precision problems discussed in
connection with equation (18). Furthermore, B and T are ‘squares’ of A, which leads to a loss
of numerical precision compared with an A-based strategy.

The most widely used A-based strategy is referred to as Heller’s method [9]. The idea is
to find Cj as the solution of the M � N set of equations

∑
j Cj Ajs = 0, with the additional

constraint
∑

j Cj Aj0 = 1. Table 1 gives the definition of Aj0.
By constraining the wavefunction to be �(X0) = 1 at a selected point X0 in the interior

of the billiard, we eliminate the problems associated with evanescent states, as the associated
(evanescent) wavefunctions no longer vanish on the boundary and thus, there is no longer a
null-space problem. As a result, quite large b can be used without encountering numerical
instabilities. The only worry with this method is that X0 may happen to be very close to a
nodal line. In such cases, the tension will be large due to an improper normalization, so we
will miss these eigenstates.
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